机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2014年
21期
159-163
,共5页
王奉涛%陈守海%闫达文%王雷%朱泓%刘恩龙
王奉濤%陳守海%閆達文%王雷%硃泓%劉恩龍
왕봉도%진수해%염체문%왕뢰%주홍%류은룡
对偶树复小波%最大展开流形%降噪%滚动轴承%故障诊断
對偶樹複小波%最大展開流形%降譟%滾動軸承%故障診斷
대우수복소파%최대전개류형%강조%곤동축승%고장진단
dual-tree complex wavelet transform%maximum variance unfolding%noise reduction%rolling bearings%fault diagnosis
滚动轴承工作环境比较复杂,现场测得的振动信号往往含有大量噪声且滚动轴承早期故障特征比较微弱容易被噪声所淹没,如何有效降低滚动轴承故障信号中的噪声准确提取故障特征是一个难题。将流形理论与对偶树复小波(Dual-tree complex wavelet transform, DTCWT)方法结合,提出一种对偶树复小波流形域降噪方法。将轴承振动信号进行对偶树复小波分解构造高维信号空间,然后利用最大方差展开流形算法(Maximum variance unfolding, MVU)提取高维信号空间中的真实信号子空间,去除噪声子空间,充分利用了MVU的非线性特征提取能力以及DTCWT的完全重构特征和平移不变性。运用仿真数据和滚动轴承工程信号对降噪方法进行检验,结果表明DTCWT_MVU可以有效消除轴承信号中的噪声成分,保持信号特征波形,提高信噪比,具有较强的工程使用价值和通用性。
滾動軸承工作環境比較複雜,現場測得的振動信號往往含有大量譟聲且滾動軸承早期故障特徵比較微弱容易被譟聲所淹沒,如何有效降低滾動軸承故障信號中的譟聲準確提取故障特徵是一箇難題。將流形理論與對偶樹複小波(Dual-tree complex wavelet transform, DTCWT)方法結閤,提齣一種對偶樹複小波流形域降譟方法。將軸承振動信號進行對偶樹複小波分解構造高維信號空間,然後利用最大方差展開流形算法(Maximum variance unfolding, MVU)提取高維信號空間中的真實信號子空間,去除譟聲子空間,充分利用瞭MVU的非線性特徵提取能力以及DTCWT的完全重構特徵和平移不變性。運用倣真數據和滾動軸承工程信號對降譟方法進行檢驗,結果錶明DTCWT_MVU可以有效消除軸承信號中的譟聲成分,保持信號特徵波形,提高信譟比,具有較彊的工程使用價值和通用性。
곤동축승공작배경비교복잡,현장측득적진동신호왕왕함유대량조성차곤동축승조기고장특정비교미약용역피조성소엄몰,여하유효강저곤동축승고장신호중적조성준학제취고장특정시일개난제。장류형이론여대우수복소파(Dual-tree complex wavelet transform, DTCWT)방법결합,제출일충대우수복소파류형역강조방법。장축승진동신호진행대우수복소파분해구조고유신호공간,연후이용최대방차전개류형산법(Maximum variance unfolding, MVU)제취고유신호공간중적진실신호자공간,거제조성자공간,충분이용료MVU적비선성특정제취능력이급DTCWT적완전중구특정화평이불변성。운용방진수거화곤동축승공정신호대강조방법진행검험,결과표명DTCWT_MVU가이유효소제축승신호중적조성성분,보지신호특정파형,제고신조비,구유교강적공정사용개치화통용성。
The rolling element bearing works in a very complex environment. Early bearing fault features are relatively weak and easily to be overwhelmed by the large amount of noise. How to reduce the noise and extract the fault features accurately is a difficult problem. Novel noise reduction method is put forward based on dual tree complex wavelet transform (DTCWT) and maximum variance unfolding (MVU). The DTCWT is applied to rolling-bearing vibration signals to structure the high dimensional signal space. The MVU is used to extract the real signal subspace from high dimensional signal space and eliminate the noise interference of the noise subspace. The proposed method makes full advantage of the nonlinear feature extraction ability of the MVU algorithms and the perfect reconstruction and near shift invariance of the DTCWT. The simulation and the bearing engineering signal is carried out to inspect the noise reduction method, and the results demonstrate that DTCWT_MVU can effectively eliminate the noise component of the bearing signal and keep its characteristic waveform and improve signal to noise ratio (SNR) with the practical and generality.