电力系统保护与控制
電力繫統保護與控製
전력계통보호여공제
POWER SYSTM PROTECTION AND CONTROL
2014年
21期
93-98
,共6页
云计算%Mapreduce框架%电力负荷分类%模糊C均值聚类算法%量子粒子群算法
雲計算%Mapreduce框架%電力負荷分類%模糊C均值聚類算法%量子粒子群算法
운계산%Mapreduce광가%전력부하분류%모호C균치취류산법%양자입자군산법
cloud computing%Mapreduce framework%power load forecasting%Fuzzy C-Means%QPSO
针对电力数据海量化、多维化的趋势,为了提高聚类算法的聚类质量,并解决传统聚类算法聚类海量高维数据时单机计算资源不足的瓶颈,提出了一种基于云计算的电力负荷曲线聚类的并行量子粒子群优化模糊C均值聚类算法。将量子粒子群群体智能算法引入到传统模糊C均值聚类算法中,利用QPSO较强的全局搜索能力,克服FCM算法易陷入局部最优以及其对初始聚类中心过于敏感的缺陷。最后,采用云计算的MapReduce编程框架以及HBase分布式数据库对算法进行并行化改进。经实验验证与FCM算法和AFCM算法相比聚类正确率提高了10%左右,且并行性能较好。
針對電力數據海量化、多維化的趨勢,為瞭提高聚類算法的聚類質量,併解決傳統聚類算法聚類海量高維數據時單機計算資源不足的瓶頸,提齣瞭一種基于雲計算的電力負荷麯線聚類的併行量子粒子群優化模糊C均值聚類算法。將量子粒子群群體智能算法引入到傳統模糊C均值聚類算法中,利用QPSO較彊的全跼搜索能力,剋服FCM算法易陷入跼部最優以及其對初始聚類中心過于敏感的缺陷。最後,採用雲計算的MapReduce編程框架以及HBase分佈式數據庫對算法進行併行化改進。經實驗驗證與FCM算法和AFCM算法相比聚類正確率提高瞭10%左右,且併行性能較好。
침대전력수거해양화、다유화적추세,위료제고취류산법적취류질량,병해결전통취류산법취류해량고유수거시단궤계산자원불족적병경,제출료일충기우운계산적전력부하곡선취류적병행양자입자군우화모호C균치취류산법。장양자입자군군체지능산법인입도전통모호C균치취류산법중,이용QPSO교강적전국수색능력,극복FCM산법역함입국부최우이급기대초시취류중심과우민감적결함。최후,채용운계산적MapReduce편정광가이급HBase분포식수거고대산법진행병행화개진。경실험험증여FCM산법화AFCM산법상비취류정학솔제고료10%좌우,차병행성능교호。
Encountering the trend of massive amd multidimensional data, in order to improve the quality of clustering algorithm and solve the computing resources bottleneck of traditional clustering algorithm when clustering massive amounts of high dimensional data, this paper proposes a Parallel Quantum-Behaved Particle Swarm Optimization Fuzzy C-Means clustering algorithm based on cloud computing for power load curve clustering. Quantum particle swarm intelligence algorithm (QPSO) is introduced into the traditional Fuzzy C-Means (FCM) clustering algorithm, QPSO‘s stronger global search ability is used to overcome FCM algorithm‘s weakness of falling into local optimum easily and being sensitive to initial clustering center. Cloud computing is adopted in the MapReduce programming framework and HBase distributed database to parallelization algorithm is improved. Many experiments verify that compared with traditional FCM algorithm and AFCM algorithm the clustering accuracy is increased by about 10%with better parallel performance.