电力系统保护与控制
電力繫統保護與控製
전력계통보호여공제
POWER SYSTM PROTECTION AND CONTROL
2014年
21期
66-73
,共8页
量子和声搜索算法%折现因子%组合预测模型%电量预测
量子和聲搜索算法%摺現因子%組閤預測模型%電量預測
양자화성수색산법%절현인자%조합예측모형%전량예측
quantum harmony search algorithm%discounting factor%combination forecasting method%electricity consumption forecasting
为了最大限度利用单项模型预测信息,减少模型选择的风险,给出了一种基于量子和声搜索算法(QHS)的改进DMSFE组合预测方法(QHS-IDMSFE)。考虑时点差异和模型差异,将DMSFE模型中的折现因子β扩展为矩阵形式。并采用量子编码和声库,利用态叠加增加和声库中每个和声携带的信息量,提高算法的寻优能力,以达到在保证MAPE目标函数最小前提下通过QHS算法寻优确定出最优β矩阵形式,进而确定单项模型的组合权重。采用两个地区年用电量数据对提出的模型进行验证,结果显示该组合方法能有效提高预测精度且适用于中长期电量预测。同时能够实现矩阵β的智能寻优,并保证预测误差最小。
為瞭最大限度利用單項模型預測信息,減少模型選擇的風險,給齣瞭一種基于量子和聲搜索算法(QHS)的改進DMSFE組閤預測方法(QHS-IDMSFE)。攷慮時點差異和模型差異,將DMSFE模型中的摺現因子β擴展為矩陣形式。併採用量子編碼和聲庫,利用態疊加增加和聲庫中每箇和聲攜帶的信息量,提高算法的尋優能力,以達到在保證MAPE目標函數最小前提下通過QHS算法尋優確定齣最優β矩陣形式,進而確定單項模型的組閤權重。採用兩箇地區年用電量數據對提齣的模型進行驗證,結果顯示該組閤方法能有效提高預測精度且適用于中長期電量預測。同時能夠實現矩陣β的智能尋優,併保證預測誤差最小。
위료최대한도이용단항모형예측신식,감소모형선택적풍험,급출료일충기우양자화성수색산법(QHS)적개진DMSFE조합예측방법(QHS-IDMSFE)。고필시점차이화모형차이,장DMSFE모형중적절현인자β확전위구진형식。병채용양자편마화성고,이용태첩가증가화성고중매개화성휴대적신식량,제고산법적심우능력,이체도재보증MAPE목표함수최소전제하통과QHS산법심우학정출최우β구진형식,진이학정단항모형적조합권중。채용량개지구년용전량수거대제출적모형진행험증,결과현시해조합방법능유효제고예측정도차괄용우중장기전량예측。동시능구실현구진β적지능심우,병보증예측오차최소。
A new quantum harmony search based improved discounted mean square forecast error (QHS-IDMSFE) combination model is proposed in order to combine the information of single forecasting result and reduce the risk of choosing model. Considering the influence of time difference and single model difference, the discounting factor (β) in DMSFE is extended to the matrix form. Quantum harmony is employed in Harmony Memory (HM) to increase the information of harmony based on quantum states superposition, which can effectively improve the performance of search efficiency. Thus, the bestβvalue can be determined through optimizing Mean Absolute Percent Error (MAPE) objective function by QHS algorithm. So, the corresponding weight for each single model can be determined based on optimalβvalue. The QHS-IDMSFE combination forecasting method is established and tested for annual electricity consumption prediction for two areas. The empirical analysis confirms the validity of the presented method and the forecasting accuracy can be increased in a certain degree. The proposed method is suitable to mid-long term electricity consumption prediction;meanwhile, the optimalβvalue can be determined intelligently.