中国特种设备安全
中國特種設備安全
중국특충설비안전
CHINA SPECIAL EQUIPMENT SAFETY
2013年
6期
2-8
,共7页
W火焰锅炉%炉内热负荷%不均匀系数%数值研究%燃烧优化
W火燄鍋爐%爐內熱負荷%不均勻繫數%數值研究%燃燒優化
W화염과로%로내열부하%불균균계수%수치연구%연소우화
W-lfame boiler%In-furnace thermal load%Non-uniform coefifcient%Numerical Research%Combustion optimization
采用Fluent6.3软件,对福溪电厂600MW超临界机组W火焰锅炉的炉内热负荷分布状况进行了数值研究。研究结果表明:沿炉膛高度﹑深度以及宽度方向热负荷不均匀系数分别为0.6~1.6﹑0.94~1.08和0.78~1.13。烟气在上炉膛需绕流经过折焰角,受到向前的挤压,从而导致前墙热负荷高于后墙。燃尽风率增大时,下炉膛热负荷增大,上炉膛热负荷减小;沿宽度方向热负荷不均匀性增加;而沿深度方向热负荷不均匀性减少。卫燃带的增加,使得下炉膛热负荷减少,上炉膛热负荷增加;沿宽度方向热负荷不均匀性增加;而沿深度热负荷不均匀性减少。过量空气系数增加时下炉膛热负荷增加,上炉膛热负荷减少;沿宽度和沿深度的热负荷不均匀性都减少。煤粉细度变化对沿炉膛高度和深度方向热负荷分布影响很小,而沿宽度热负荷不均匀性随着煤粉变粗而减小。研究成果可作为W火焰锅炉燃烧优化调整和水冷壁安全运行的重要依据。
採用Fluent6.3軟件,對福溪電廠600MW超臨界機組W火燄鍋爐的爐內熱負荷分佈狀況進行瞭數值研究。研究結果錶明:沿爐膛高度﹑深度以及寬度方嚮熱負荷不均勻繫數分彆為0.6~1.6﹑0.94~1.08和0.78~1.13。煙氣在上爐膛需繞流經過摺燄角,受到嚮前的擠壓,從而導緻前牆熱負荷高于後牆。燃儘風率增大時,下爐膛熱負荷增大,上爐膛熱負荷減小;沿寬度方嚮熱負荷不均勻性增加;而沿深度方嚮熱負荷不均勻性減少。衛燃帶的增加,使得下爐膛熱負荷減少,上爐膛熱負荷增加;沿寬度方嚮熱負荷不均勻性增加;而沿深度熱負荷不均勻性減少。過量空氣繫數增加時下爐膛熱負荷增加,上爐膛熱負荷減少;沿寬度和沿深度的熱負荷不均勻性都減少。煤粉細度變化對沿爐膛高度和深度方嚮熱負荷分佈影響很小,而沿寬度熱負荷不均勻性隨著煤粉變粗而減小。研究成果可作為W火燄鍋爐燃燒優化調整和水冷壁安全運行的重要依據。
채용Fluent6.3연건,대복계전엄600MW초림계궤조W화염과로적로내열부하분포상황진행료수치연구。연구결과표명:연로당고도﹑심도이급관도방향열부하불균균계수분별위0.6~1.6﹑0.94~1.08화0.78~1.13。연기재상로당수요류경과절염각,수도향전적제압,종이도치전장열부하고우후장。연진풍솔증대시,하로당열부하증대,상로당열부하감소;연관도방향열부하불균균성증가;이연심도방향열부하불균균성감소。위연대적증가,사득하로당열부하감소,상로당열부하증가;연관도방향열부하불균균성증가;이연심도열부하불균균성감소。과량공기계수증가시하로당열부하증가,상로당열부하감소;연관도화연심도적열부하불균균성도감소。매분세도변화대연로당고도화심도방향열부하분포영향흔소,이연관도열부하불균균성수착매분변조이감소。연구성과가작위W화염과로연소우화조정화수랭벽안전운행적중요의거。
By making use of FLUENT6.3 software, numerical study on in-furnace thermal load distribution of a 600MW supercritical unit W-Flame Boiler in Fuxi Power Station was conducted. The results showed that thermal load non-uniform coefifcient along furnace height, furnace hearth depth as well as furnace width respectively was 0.6~1.6, 0.94~1.08 and 0.78~1.13. Flue gas needed to lfow around the furnace arch in upper furnace and received the forward extrusion, which caused the front wall thermal load was higher than the back wall's. When over-ifre air rate increased, lower furnace thermal load increased while upper furnace thermal load decreased, thermal load non-uniformity increased along furnace width while thermal load non-uniformity reduced along furnace hearth depth. When refractory belt increased, lower furnace thermal load reduced while upper furnace thermal load increased, thermal load non-uniformity increased along furnace width while thermal load non-uniformity reduced along furnace hearth depth. When the excess air coefifcient increased, lower furnace thermal load increased while upper furnace thermal load reduced, thermal load non-uniformity reduced along both furnace width and hearth depth. Changing the ifneness of pulverized coal had little impact on thermal load distribution along furnace height and hearth depth, while thermal load non-uniformity reduced along furnace width when the ifneness of pulverized coal increased. The research results can be referred as important basis for the W-Flame Boiler combustion optimization and the water-cooled wall safe operation.