山东建筑大学学报
山東建築大學學報
산동건축대학학보
JOURNAL OF SHANDONG JIANZHU UNIVERSITY
2014年
5期
397-402
,共6页
段培永%赵艳玲%李慧%刘桂云%冯鑫
段培永%趙豔玲%李慧%劉桂雲%馮鑫
단배영%조염령%리혜%류계운%풍흠
粒子群%最小二乘支持向量机%建筑周围气象参数%超短期预测
粒子群%最小二乘支持嚮量機%建築週圍氣象參數%超短期預測
입자군%최소이승지지향량궤%건축주위기상삼수%초단기예측
particle swarm optimization(PSO)%least squares support vector machine(LS-SVM)%weather parameters around buildings%ultra-short term forecast
建筑周围气象参数的不确定性和持续波动性,为建筑系统动态负荷预测及实时优化控制带来困难。文章以最小二乘支持向量机(LSSVM)作为预测算法,运用粒子群优化算法( PSO)优化 LSSVM 模型参数,建立基于历史信息的多输入多输出(MIMO)建筑周围气象参数预测模型,对影响建筑负荷的室外温度、湿度及风速进行超短期预测。结果表明:PSO 算法可对模型参数进行优化,基于 PSO-LSSVM 算法构建的建筑周围气象参数超短期预测模型能够实现未来140 min 气象参数的预测,为建筑供能和用能系统动态优化运行提供数据。
建築週圍氣象參數的不確定性和持續波動性,為建築繫統動態負荷預測及實時優化控製帶來睏難。文章以最小二乘支持嚮量機(LSSVM)作為預測算法,運用粒子群優化算法( PSO)優化 LSSVM 模型參數,建立基于歷史信息的多輸入多輸齣(MIMO)建築週圍氣象參數預測模型,對影響建築負荷的室外溫度、濕度及風速進行超短期預測。結果錶明:PSO 算法可對模型參數進行優化,基于 PSO-LSSVM 算法構建的建築週圍氣象參數超短期預測模型能夠實現未來140 min 氣象參數的預測,為建築供能和用能繫統動態優化運行提供數據。
건축주위기상삼수적불학정성화지속파동성,위건축계통동태부하예측급실시우화공제대래곤난。문장이최소이승지지향량궤(LSSVM)작위예측산법,운용입자군우화산법( PSO)우화 LSSVM 모형삼수,건립기우역사신식적다수입다수출(MIMO)건축주위기상삼수예측모형,대영향건축부하적실외온도、습도급풍속진행초단기예측。결과표명:PSO 산법가대모형삼수진행우화,기우 PSO-LSSVM 산법구건적건축주위기상삼수초단기예측모형능구실현미래140 min 기상삼수적예측,위건축공능화용능계통동태우화운행제공수거。
The uncertainty and volatility of weather around buildings bring difficulty for dynamic load forecasting and building system's real-time optimal control. A multi-input/ multi-output( MIMO) weather forecasting model is built based on historical information,using the least squares support vector machine(LSSVM)as the model prediction algorithm and particle swarm optimization(PSO)to optimize the parameters of the LSSVM,this article predicts the temperature,humidity and wind speed which influences the building load in ultra-short term by the proposed model. The results show that, PSO algorithm can optimize the model parameters,and this ultra-short term forecasting model based on PSO-LSSVM( least squares support vector machine based on the particle swarm optimization) predicts weather parameters in 140 minutes ahead,and provides data for dynamic optimal operation of building supply and use system.