中国电机工程学报
中國電機工程學報
중국전궤공정학보
ZHONGGUO DIANJI GONGCHENG XUEBAO
2014年
32期
5734-5740
,共7页
γFe2O3催化剂%选择性催化还原(SCR)%脱硝%原位红外漫反射光谱%吸附
γFe2O3催化劑%選擇性催化還原(SCR)%脫硝%原位紅外漫反射光譜%吸附
γFe2O3최화제%선택성최화환원(SCR)%탈초%원위홍외만반사광보%흡부
γFe2O3 catalyst%selective catalysis reduction(SCR)%denitration%in-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)%adsorption
采用γFe2O3纳米粉末制备选择性催化还原(selective catalysis reduction,SCR)脱硝催化剂,通过XRD、BET对催化剂进行表征,并对此催化剂的低温SCR脱硝性能在一固定床反应器中进行考察;此外通过原位红外漫反射光谱法(diffuse reflectance infrared Fourier transform spectroscopy, DRIFTS)研究了反应物在催化剂表面的吸附活化。结果表明,实验所采用的Fe2O3为纯γ相,具有较高的热稳定性和脱硝效率。DRIFTS实验研究表明,NH3主要吸附到γFe2O3催化剂表面 L 酸位形成吸附态的 NH3,在小于270℃时有部分NH3吸附到B酸位生成NH4+;O2的存在能促进吸附到L 酸位上的 NH3发生脱氢反应生成 NH2,并能够大大促进NO在催化剂表面吸附生成硝酸盐和吸附态的NO2,从而促进低温下的SCR反应。在90~360℃的温度区间内可能遵循两种反应途径,主要反应是吸附在L酸位的NH3脱氢生成NH2,然后和气态的NO反应生成N2和H2O;在低于240℃时,可能存在另外一种反应途径,中间产物 NO2(NH4+)2与NO反应生成N2、H2O和H+。
採用γFe2O3納米粉末製備選擇性催化還原(selective catalysis reduction,SCR)脫硝催化劑,通過XRD、BET對催化劑進行錶徵,併對此催化劑的低溫SCR脫硝性能在一固定床反應器中進行攷察;此外通過原位紅外漫反射光譜法(diffuse reflectance infrared Fourier transform spectroscopy, DRIFTS)研究瞭反應物在催化劑錶麵的吸附活化。結果錶明,實驗所採用的Fe2O3為純γ相,具有較高的熱穩定性和脫硝效率。DRIFTS實驗研究錶明,NH3主要吸附到γFe2O3催化劑錶麵 L 痠位形成吸附態的 NH3,在小于270℃時有部分NH3吸附到B痠位生成NH4+;O2的存在能促進吸附到L 痠位上的 NH3髮生脫氫反應生成 NH2,併能夠大大促進NO在催化劑錶麵吸附生成硝痠鹽和吸附態的NO2,從而促進低溫下的SCR反應。在90~360℃的溫度區間內可能遵循兩種反應途徑,主要反應是吸附在L痠位的NH3脫氫生成NH2,然後和氣態的NO反應生成N2和H2O;在低于240℃時,可能存在另外一種反應途徑,中間產物 NO2(NH4+)2與NO反應生成N2、H2O和H+。
채용γFe2O3납미분말제비선택성최화환원(selective catalysis reduction,SCR)탈초최화제,통과XRD、BET대최화제진행표정,병대차최화제적저온SCR탈초성능재일고정상반응기중진행고찰;차외통과원위홍외만반사광보법(diffuse reflectance infrared Fourier transform spectroscopy, DRIFTS)연구료반응물재최화제표면적흡부활화。결과표명,실험소채용적Fe2O3위순γ상,구유교고적열은정성화탈초효솔。DRIFTS실험연구표명,NH3주요흡부도γFe2O3최화제표면 L 산위형성흡부태적 NH3,재소우270℃시유부분NH3흡부도B산위생성NH4+;O2적존재능촉진흡부도L 산위상적 NH3발생탈경반응생성 NH2,병능구대대촉진NO재최화제표면흡부생성초산염화흡부태적NO2,종이촉진저온하적SCR반응。재90~360℃적온도구간내가능준순량충반응도경,주요반응시흡부재L산위적NH3탈경생성NH2,연후화기태적NO반응생성N2화H2O;재저우240℃시,가능존재령외일충반응도경,중간산물 NO2(NH4+)2여NO반응생성N2、H2O화H+。
The catalyst used for selective catalysis reduction (SCR) of NOx was prepared from γFe2O3 nanoparticles and characterized by XRD and BET methods. The catalytic experiments at low temperature were carried out in a fixed bed reactor. The adsorption and activation of NH3 and NO on γFe2O3 nano-catalyst were investigated by in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurement. Results showed that Fe2O3 used for catalytic reaction was pure maghemite phase with high thermal stability, and exhibited a high low-temperature denitration performance. The DRIFTS experiments showed that NH3 was mainly adsorbed on Lewis acid sites to form coordinated NH3, while partial NH3 was adsorbed on Br?nsted acid sites to form ammonium at the temperature below 270℃. O2 promoted the dehydrogenation of coordinated NH3 to form amide species. O2 greatly enhanced the adsorption of NO on catalysts surface to form nitrate species and absorbed NO2. Two possible reaction paths on γFe2O3 catalyst were proposed. The SCR process mainly follows that NH2 formed by H-abstraction of coordinated NH3 reactes with NO to form N2 and H2O. In a relative low temperature range (<240℃), another reaction path follows that NO2(NH4+)2 as the key intermediate product reactes with NO to form N2, H2O and H+.