生态环境学报
生態環境學報
생태배경학보
ECOLOGY AND ENVIRONMENT
2014年
9期
1557-1566
,共10页
续勇波%XU Zhihong%蔡祖聪
續勇波%XU Zhihong%蔡祖聰
속용파%XU Zhihong%채조총
反硝化%环境效应%氮淋失%保氮策略%氧化亚氮
反硝化%環境效應%氮淋失%保氮策略%氧化亞氮
반초화%배경효응%담림실%보담책략%양화아담
denitrification%environmental implication%nitrate leaching%nitrogen retention strategies%nitrous oxide
热带亚热带独特的土壤性质可能使得反硝化机理有别于温带土壤。文章综述了热带亚热带地区土壤氮素生物反硝化的研究进展,试图更好地了解该地区土壤反硝化在全球氮(N)循环以及在全球环境变化和生态系统响应互作中的角色。热带亚热带土壤反硝化强度普遍较温带地区弱,且随着土地利用方式和耕作管理措施的不同而呈现较大的时空变异性。影响土壤水分状况和土壤碳(C)、N 转化特性和速率的因素即为区域和农田尺度上的反硝化影响因素。湿润型热带亚热带土壤由于含有丰富的氧化物而致使土壤氧化还原势较高,这也是导致该地区土壤反硝化势较温带地区较低的关键土壤因素之一。然而土壤pH值不是该地区土壤反硝化势较低的主要限制因素。有机C矿化过程较土壤全氮含量和土壤C/N比在决定湿润型亚热带土壤反硝化势方面更为重要。愈来愈多的证据表明热带亚热带土壤反硝化的生态环境效应不同于温带地区,热带亚热带地区土壤反硝化对全球变暖的贡献应综合考虑其对其它温室气体(如CH4,CO2)排放和氮沉降的影响。热带亚热带土壤生态系统具有一些防止土壤氮素反硝化损失的机制和保氮策略。然而,热带亚热带生态系统对全球变化的响应机制及其生物地球化学调控机制仍然不清楚,这些研究对于反硝化和其它同时发生的氮转化过程模型的精确构建至关重要。
熱帶亞熱帶獨特的土壤性質可能使得反硝化機理有彆于溫帶土壤。文章綜述瞭熱帶亞熱帶地區土壤氮素生物反硝化的研究進展,試圖更好地瞭解該地區土壤反硝化在全毬氮(N)循環以及在全毬環境變化和生態繫統響應互作中的角色。熱帶亞熱帶土壤反硝化彊度普遍較溫帶地區弱,且隨著土地利用方式和耕作管理措施的不同而呈現較大的時空變異性。影響土壤水分狀況和土壤碳(C)、N 轉化特性和速率的因素即為區域和農田呎度上的反硝化影響因素。濕潤型熱帶亞熱帶土壤由于含有豐富的氧化物而緻使土壤氧化還原勢較高,這也是導緻該地區土壤反硝化勢較溫帶地區較低的關鍵土壤因素之一。然而土壤pH值不是該地區土壤反硝化勢較低的主要限製因素。有機C礦化過程較土壤全氮含量和土壤C/N比在決定濕潤型亞熱帶土壤反硝化勢方麵更為重要。愈來愈多的證據錶明熱帶亞熱帶土壤反硝化的生態環境效應不同于溫帶地區,熱帶亞熱帶地區土壤反硝化對全毬變暖的貢獻應綜閤攷慮其對其它溫室氣體(如CH4,CO2)排放和氮沉降的影響。熱帶亞熱帶土壤生態繫統具有一些防止土壤氮素反硝化損失的機製和保氮策略。然而,熱帶亞熱帶生態繫統對全毬變化的響應機製及其生物地毬化學調控機製仍然不清楚,這些研究對于反硝化和其它同時髮生的氮轉化過程模型的精確構建至關重要。
열대아열대독특적토양성질가능사득반초화궤리유별우온대토양。문장종술료열대아열대지구토양담소생물반초화적연구진전,시도경호지료해해지구토양반초화재전구담(N)순배이급재전구배경변화화생태계통향응호작중적각색。열대아열대토양반초화강도보편교온대지구약,차수착토지이용방식화경작관리조시적불동이정현교대적시공변이성。영향토양수분상황화토양탄(C)、N 전화특성화속솔적인소즉위구역화농전척도상적반초화영향인소。습윤형열대아열대토양유우함유봉부적양화물이치사토양양화환원세교고,저야시도치해지구토양반초화세교온대지구교저적관건토양인소지일。연이토양pH치불시해지구토양반초화세교저적주요한제인소。유궤C광화과정교토양전담함량화토양C/N비재결정습윤형아열대토양반초화세방면경위중요。유래유다적증거표명열대아열대토양반초화적생태배경효응불동우온대지구,열대아열대지구토양반초화대전구변난적공헌응종합고필기대기타온실기체(여CH4,CO2)배방화담침강적영향。열대아열대토양생태계통구유일사방지토양담소반초화손실적궤제화보담책략。연이,열대아열대생태계통대전구변화적향응궤제급기생물지구화학조공궤제잉연불청초,저사연구대우반초화화기타동시발생적담전화과정모형적정학구건지관중요。
Denitrification has been extensively studied in soils from temperate zones in industrialized countries. However, few studies quantifying denitrification rates in soils from tropical and subtropical zones have been reported. Denitrification mechanisms in tropical/subtropical soils may be different from other soils, due to their unique soil characteristics. The identification of denitrification in the area is crucial to understand the role of denitrification in the global nitrogen (N) cycle in terrestrial ecosystems, and in the interaction between global environmental changes and ecosystem responses. We review the existing literature on microbially-mediated denitrification in tropical/subtropical soils, attempting to provide a better understanding about and new research directions for denitrification in these regions. Tropical and subtropical soils might be characterized by generally lower denitrification capacity than temperate soils, with greater variability due to land use and management practices varying temporally and spatially. Factors that influence soil water content and the nature and rate of carbon (C) and N turnover are the landscape and field scale controls of denitrification. High redox potential in the field, which is mainly attributed to soil oxide enrichment, may be at least one critical edaphic variable responsible for slow denitrification rates in the humid tropical and subtropical soils. However, soil pH is not responsible for these slow denitrification rates. Organic C mineralization is more important than total N content and C/N in determining denitrification capacity in humid subtropical soils. There is increasing evidence that the ecological consequence of denitrification in tropical and subtropical soils may be different from that of temperate zones. Contribution of denitrification in tropical and subtropical regions to the global climate warming should be considered comprehensively since it could affect other greenhouse gases, such as methane (CH4) and carbon dioxide (CO2), and N deposition. Tropical/subtropical soils have developed several N conservation strategies to prevent N losses via denitrification from the ecosystems. However, the mechanisms involved in the biogeochemical regulation of tropical and subtropical ecosystem responses to environmental changes are largely unknown. These works are important for accurately modeling denitrification and all other simultaneously operating N transformations.