固体火箭技术
固體火箭技術
고체화전기술
JOURNAL OF SOLID ROCKET TECHNOLOGY
2014年
5期
711-717
,共7页
王建武%李克智%张守阳%李伟
王建武%李剋智%張守暘%李偉
왕건무%리극지%장수양%리위
碳/碳复合材料%等温化学气相渗透%多物理场耦合%数值模拟
碳/碳複閤材料%等溫化學氣相滲透%多物理場耦閤%數值模擬
탄/탄복합재료%등온화학기상삼투%다물리장우합%수치모의
carbon/carbon composites%isothermal chemical vapor infiltration%multi-physical fields coupling%numerical simu-lation
为了研究等温化学气相渗透( ICVI)工艺制备C/C复合材料过程中预制体的致密化过程及流场和温度场的分布,利用COMSOL软件建立预制体致密化过程中传质、传热和孔隙率变化的多场耦合模型。以甲烷为前驱体,将动量和能量守恒方程进行耦合计算,计算结果表明,在传质最初始阶段,前驱体温度迅速升高至设定的沉积温度,且整个反应器内部温度分布均匀。根据以上计算结果,设定温度为定值,耦合质量、动量守恒方程和孔隙率变化方程,通过计算得到在开始致密化阶段预制体最大密度分布在预制体中部,随着致密化进行,该区域向外侧移动。致密化150 h后,不同时间预制体整体平均密度的计算值与实验值吻合较好,验证了致密化模型的可靠性。
為瞭研究等溫化學氣相滲透( ICVI)工藝製備C/C複閤材料過程中預製體的緻密化過程及流場和溫度場的分佈,利用COMSOL軟件建立預製體緻密化過程中傳質、傳熱和孔隙率變化的多場耦閤模型。以甲烷為前驅體,將動量和能量守恆方程進行耦閤計算,計算結果錶明,在傳質最初始階段,前驅體溫度迅速升高至設定的沉積溫度,且整箇反應器內部溫度分佈均勻。根據以上計算結果,設定溫度為定值,耦閤質量、動量守恆方程和孔隙率變化方程,通過計算得到在開始緻密化階段預製體最大密度分佈在預製體中部,隨著緻密化進行,該區域嚮外側移動。緻密化150 h後,不同時間預製體整體平均密度的計算值與實驗值吻閤較好,驗證瞭緻密化模型的可靠性。
위료연구등온화학기상삼투( ICVI)공예제비C/C복합재료과정중예제체적치밀화과정급류장화온도장적분포,이용COMSOL연건건립예제체치밀화과정중전질、전열화공극솔변화적다장우합모형。이갑완위전구체,장동량화능량수항방정진행우합계산,계산결과표명,재전질최초시계단,전구체온도신속승고지설정적침적온도,차정개반응기내부온도분포균균。근거이상계산결과,설정온도위정치,우합질량、동량수항방정화공극솔변화방정,통과계산득도재개시치밀화계단예제체최대밀도분포재예제체중부,수착치밀화진행,해구역향외측이동。치밀화150 h후,불동시간예제체정체평균밀도적계산치여실험치문합교호,험증료치밀화모형적가고성。
In order to investigate the process of the isothermal chemical vapor infiltration( ICVI) and the distribution of velocity and temperature for fabricating carbon/carbon composites, a multi-physical fields coupling models were developed through COM-SOL, including the mass and heat transportation, and the variation of porosity in the densification process. Taking Methane as the precursor, the momentum and energy equations were solved. The results indicate that the temperature rises rapidly to the setting point at the beginning and the distribution of temperature was uniform in the reactor.According to above results, the temperature was set as the constant value in the next step. Then the coupling equations of the mass and momentum conservation and the changing po-rosity equation were calculated to obtain the variation of preform density. The results show that the region of maximum density is dis-tributed in the middle of preform and this region move towards the edge during the densification process. After the preform is infiltra-ted for 150h, the bulk density of simulation agrees well with the experimental data, which demonstrate that the densification model is reliable.