计算机技术与发展
計算機技術與髮展
계산궤기술여발전
COMPUTER TECHNOLOGY AND DEVELOPMENT
2014年
11期
17-22
,共6页
群体仿真%BOIDS算法%Ping-Pong技术%实时模拟%GPU
群體倣真%BOIDS算法%Ping-Pong技術%實時模擬%GPU
군체방진%BOIDS산법%Ping-Pong기술%실시모의%GPU
crowds simulation%BOIDS algorithm%Ping-Pong technology%real-time simulation%GPU
群体仿真在虚拟现实、影视动画、计算机游戏等领域有着广泛的应用。大规模的群体仿真中每个个体都要同其感知范围内的其他个体相互作用,当实时更新所有个体的状态时,就会导致O( N2)计算量的问题。针对这一问题,实现了一种基于GPU(图形处理器)的BOIDS群体行为模拟算法,充分利用GPU并行计算的能力处理大规模群体运动的巨大计算量。该方法利用GPU的快速光栅化计算每个个体同其感知范围内的其他个体的相互作用力,通过像素颜色混合功能实现作用力的累加,利用GPU自动生成MipMap的能力计算所有个体的平均速度和平均位置。实验结果表明,该方法能够有效提高大规模群体运动的渲染速度。
群體倣真在虛擬現實、影視動畫、計算機遊戲等領域有著廣汎的應用。大規模的群體倣真中每箇箇體都要同其感知範圍內的其他箇體相互作用,噹實時更新所有箇體的狀態時,就會導緻O( N2)計算量的問題。針對這一問題,實現瞭一種基于GPU(圖形處理器)的BOIDS群體行為模擬算法,充分利用GPU併行計算的能力處理大規模群體運動的巨大計算量。該方法利用GPU的快速光柵化計算每箇箇體同其感知範圍內的其他箇體的相互作用力,通過像素顏色混閤功能實現作用力的纍加,利用GPU自動生成MipMap的能力計算所有箇體的平均速度和平均位置。實驗結果錶明,該方法能夠有效提高大規模群體運動的渲染速度。
군체방진재허의현실、영시동화、계산궤유희등영역유착엄범적응용。대규모적군체방진중매개개체도요동기감지범위내적기타개체상호작용,당실시경신소유개체적상태시,취회도치O( N2)계산량적문제。침대저일문제,실현료일충기우GPU(도형처리기)적BOIDS군체행위모의산법,충분이용GPU병행계산적능력처리대규모군체운동적거대계산량。해방법이용GPU적쾌속광책화계산매개개체동기감지범위내적기타개체적상호작용력,통과상소안색혼합공능실현작용력적루가,이용GPU자동생성MipMap적능력계산소유개체적평균속도화평균위치。실험결과표명,해방법능구유효제고대규모군체운동적선염속도。
Crowds simulation has a wide range of applications in the fields such as virtual reality,film animation,computer game and so on. In the simulation of massive crowds,each individual must interact with other individuals within the range of its perception. The upda-ting of all individuals' velocities and positions result in a O( N2 ) computation. Present a GPU based implementation of BOIDS flock al-gorithm to solve the problem mentioned before. The implementation takes full advantage of parallel computing of GPU to overcome the huge computational cost in massive crowds' animation. The approach mentioned in this paper makes full use of the fast rasterization capa-bility of GPU to compute the force between each individual and its neighbor,the pixel color blending capability to accumulate the force, generating the MipMap capability to get the average velocity and average position of all individuals. Experimental results indicate that this method can improve the speed and efficiency of rendering in the simulation of large-scale crowds.