计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2014年
11期
189-193
,共5页
人工蜂群算法%函数优化%贪婪搜索%扰动搜索%深度挖掘%广度搜索
人工蜂群算法%函數優化%貪婪搜索%擾動搜索%深度挖掘%廣度搜索
인공봉군산법%함수우화%탐람수색%우동수색%심도알굴%엄도수색
Artificial Bee Colony( ABC) algorithm%function optimization%greedy search%disturbance search%depth excavation%scope search
人工蜂群算法在多峰高维函数优化问题的求解上取得了较好的结果,但随着函数的复杂度及维数增高,仍存在收敛速度慢、易陷入局部最优等问题。为此,提出一种新的人工蜂群算法。将人工蜂群对食物源的单维贪婪搜索改进为多维贪婪搜索以增强蜂群的搜索能力,避免在个别维度上出现较优解的食物源由于达到更新阈值却被废弃而造成迂回搜索的现象,引入扰动搜索机制避免迭代后期食物源位置在个别维度收敛导致算法陷入局部最优。仿真实验结果表明,该算法能保持深度挖掘和广度搜索上的平衡,在高维函数优化问题求解的收敛速度和计算精度方面表现出较好的性能。
人工蜂群算法在多峰高維函數優化問題的求解上取得瞭較好的結果,但隨著函數的複雜度及維數增高,仍存在收斂速度慢、易陷入跼部最優等問題。為此,提齣一種新的人工蜂群算法。將人工蜂群對食物源的單維貪婪搜索改進為多維貪婪搜索以增彊蜂群的搜索能力,避免在箇彆維度上齣現較優解的食物源由于達到更新閾值卻被廢棄而造成迂迴搜索的現象,引入擾動搜索機製避免迭代後期食物源位置在箇彆維度收斂導緻算法陷入跼部最優。倣真實驗結果錶明,該算法能保持深度挖掘和廣度搜索上的平衡,在高維函數優化問題求解的收斂速度和計算精度方麵錶現齣較好的性能。
인공봉군산법재다봉고유함수우화문제적구해상취득료교호적결과,단수착함수적복잡도급유수증고,잉존재수렴속도만、역함입국부최우등문제。위차,제출일충신적인공봉군산법。장인공봉군대식물원적단유탐람수색개진위다유탐람수색이증강봉군적수색능력,피면재개별유도상출현교우해적식물원유우체도경신역치각피폐기이조성우회수색적현상,인입우동수색궤제피면질대후기식물원위치재개별유도수렴도치산법함입국부최우。방진실험결과표명,해산법능보지심도알굴화엄도수색상적평형,재고유함수우화문제구해적수렴속도화계산정도방면표현출교호적성능。
Artificial Bee Colony ( ABC ) algorithm can be efficiently employed to solve the multimodal and high dimensional function optimization problem. However,low search speed and premature convergence frequently appear with more complex problem. In order to improve the algorithm performance,this paper proposes a new artifciall bee colony algorithm . It introduces a search equation based on multi-dimensional greedy search to enhance local search and avoid the solution to be abandoned which achieves optimum value in some dimensions but reach the maximum update limit. New algorithm also adds a disturbance mechanism to avoid obtaining partial optimal solutions when premature convergence in a few dimensions. Experimental results show the new algorithm can balance the exploitation and exploration,has more fast convergence speed and better computational precision in solving the multimodal and high dimensional function optimization problem.