计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2014年
11期
143-148
,共6页
协同航迹规划%网络图%多子群%蚁群算法%异质信息素
協同航跡規劃%網絡圖%多子群%蟻群算法%異質信息素
협동항적규화%망락도%다자군%의군산법%이질신식소
collaborative trajectory planning%network graph%multi-subgroup%ant colony algorithm%heterogeneous pheromone
在协同航迹规划过程中,针对传统蚁群算法存在的收敛速度慢、航迹易冲突等问题,结合由航迹片段构成的网络图特点,提出一种基于多蚁群的飞行器协同航迹规划算法。将蚁群算法中的人工蚁群划分为与飞行器数量相对应的蚂蚁子群,通过引入异质信息素实现子群之间的竞争,采取基准长度协同进化的方法引导子群规划出满足时间协同要求的航迹,利用迷失蚂蚁信息素更新策略加快算法收敛速度。实验结果表明,针对不同规划任务,在多种复杂规划环境中,该算法都能生成满足时间和空间约束的协同飞行航迹。与传统蚁群算法相比,该算法能够将规划速度提高2倍~3倍,所规划出的航迹具有更好的时空协同性能。
在協同航跡規劃過程中,針對傳統蟻群算法存在的收斂速度慢、航跡易遲突等問題,結閤由航跡片段構成的網絡圖特點,提齣一種基于多蟻群的飛行器協同航跡規劃算法。將蟻群算法中的人工蟻群劃分為與飛行器數量相對應的螞蟻子群,通過引入異質信息素實現子群之間的競爭,採取基準長度協同進化的方法引導子群規劃齣滿足時間協同要求的航跡,利用迷失螞蟻信息素更新策略加快算法收斂速度。實驗結果錶明,針對不同規劃任務,在多種複雜規劃環境中,該算法都能生成滿足時間和空間約束的協同飛行航跡。與傳統蟻群算法相比,該算法能夠將規劃速度提高2倍~3倍,所規劃齣的航跡具有更好的時空協同性能。
재협동항적규화과정중,침대전통의군산법존재적수렴속도만、항적역충돌등문제,결합유항적편단구성적망락도특점,제출일충기우다의군적비행기협동항적규화산법。장의군산법중적인공의군화분위여비행기수량상대응적마의자군,통과인입이질신식소실현자군지간적경쟁,채취기준장도협동진화적방법인도자군규화출만족시간협동요구적항적,이용미실마의신식소경신책략가쾌산법수렴속도。실험결과표명,침대불동규화임무,재다충복잡규화배경중,해산법도능생성만족시간화공간약속적협동비행항적。여전통의군산법상비,해산법능구장규화속도제고2배~3배,소규화출적항적구유경호적시공협동성능。
To solve the problem that the traditional ant colony algorithm is slow to converge and easy to conflict in the collaborative trajectory planning, considering the features of network graph consist of trajectory segments, a aircraft collaborative trajectory planning algorithm is proposed based on multi-subgroup ant colony coevolution. It divides the ant colony into subgroups with the same number of the aircrafts. Heterogeneous pheromone is introduced to simulate the competition among subgroups,reference length coevolution is adopted to guide the subgroups generating trajectory satisfying the temporal constraints, and the strategy of lost ants pheromone update is added to accelerate the convergence speed. Experimental results demonstrate that this algorithm can generate collaborative flight trajectorys satisfying the constraints of time and space in complex environments for different planning tasks. Compared with the traditional ant colony algorithm,it can generate better collaborative trajectorys,while the planning speed can be improved by 2~3 times.