电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2014年
11期
2756-2761
,共6页
脑神经网络%认知功能连接%有向传递函数%信息流增益
腦神經網絡%認知功能連接%有嚮傳遞函數%信息流增益
뇌신경망락%인지공능련접%유향전체함수%신식류증익
Brain neural network%Cognition functional connectivity%Directed Transfer Function (DTF)%Information flow gain
将网络信息的概念引入到神经科学当中对于研究脑功能机制有着积极的作用。然而人脑网络的复杂性对于理解有一定的困难。该文基于有向传递函数(Directed Transfer Function, DTF)的方法估计得到功能连接模式,进一步提出了信息流增益的计算方法,用以评价特定脑区在全脑信息传输过程中的作用。该方法将流入信息和流出信息结合,具有浓缩两者信息的优点,简化了脑复杂网络的辨识度,并且提高了结果的显示标度。仿真运算和自发、诱发脑电数据的结果都显示出通过计算分析信息流增益可以比较理想地得到各个脑区对全脑信息流的贡献。结果证明信息流增益方法为进一步理解大脑认知机制提供了可能。
將網絡信息的概唸引入到神經科學噹中對于研究腦功能機製有著積極的作用。然而人腦網絡的複雜性對于理解有一定的睏難。該文基于有嚮傳遞函數(Directed Transfer Function, DTF)的方法估計得到功能連接模式,進一步提齣瞭信息流增益的計算方法,用以評價特定腦區在全腦信息傳輸過程中的作用。該方法將流入信息和流齣信息結閤,具有濃縮兩者信息的優點,簡化瞭腦複雜網絡的辨識度,併且提高瞭結果的顯示標度。倣真運算和自髮、誘髮腦電數據的結果都顯示齣通過計算分析信息流增益可以比較理想地得到各箇腦區對全腦信息流的貢獻。結果證明信息流增益方法為進一步理解大腦認知機製提供瞭可能。
장망락신식적개념인입도신경과학당중대우연구뇌공능궤제유착적겁적작용。연이인뇌망락적복잡성대우리해유일정적곤난。해문기우유향전체함수(Directed Transfer Function, DTF)적방법고계득도공능련접모식,진일보제출료신식류증익적계산방법,용이평개특정뇌구재전뇌신식전수과정중적작용。해방법장류입신식화류출신식결합,구유농축량자신식적우점,간화료뇌복잡망락적변식도,병차제고료결과적현시표도。방진운산화자발、유발뇌전수거적결과도현시출통과계산분석신식류증익가이비교이상지득도각개뇌구대전뇌신식류적공헌。결과증명신식류증익방법위진일보리해대뇌인지궤제제공료가능。
It has a positive effect on the research of brain function to introduce the concept of network into neuroscience. However, in the real application the brain network with complex characteristics makes it hard to understand. In this paper, based on the functional connectivity patterns estimated by the Directed Transfer Function (DTF) methods, flow gain is proposed to assess the role of the specific brain region involved in the information transmission process. Integrating input and output information simultaneously, flow gain simplifies the identification of complex networks, as well as improves the display scale of the results. Both the simulation and spontaneous, evoked ElectroEncephaloGram (EEG) data indicate that flow gain can describe the output intensity of specific region to the whole brain. The results prove that with the definition of flow gain, it is possible to further the understanding of brain cognitive mechanism.