振动与冲击
振動與遲擊
진동여충격
JOURNAL OF VIBRATION AND SHOCK
2014年
21期
13-20,25
,共9页
铸钢%模块化节点%节点域%抗震性能%钢管柱
鑄鋼%模塊化節點%節點域%抗震性能%鋼管柱
주강%모괴화절점%절점역%항진성능%강관주
cast steel%modular joint%panel zone%aseismic performance%tubular column
介绍了铸钢件在钢结构体系尤其是梁柱框架中的应用和研究现状。基于利用节点域稳定塑性耗能的理念提出一种适用于方(矩)形钢管柱-H 形梁框架连接的铸钢模块化节点型式及其设计方法。对铸钢模块化节点和传统焊接节点进行了单调加载和循环往复加载非线性有限元模拟,并引入断裂指数对节点在塑性大变形条件下发生延性断裂的倾向大小作出评价。从刚度、承载力、延性、耗能能力、耗能机制、塑性变形模式等多角度分析论证了铸钢模块化节点不同于传统焊接节点的性能特点。研究结果表明,新型铸钢模块化节点的抗震性能优于传统焊接节点,可以在不损失延性的情况下充分发挥抗震钢结构体系的耗能能力。
介紹瞭鑄鋼件在鋼結構體繫尤其是樑柱框架中的應用和研究現狀。基于利用節點域穩定塑性耗能的理唸提齣一種適用于方(矩)形鋼管柱-H 形樑框架連接的鑄鋼模塊化節點型式及其設計方法。對鑄鋼模塊化節點和傳統銲接節點進行瞭單調加載和循環往複加載非線性有限元模擬,併引入斷裂指數對節點在塑性大變形條件下髮生延性斷裂的傾嚮大小作齣評價。從剛度、承載力、延性、耗能能力、耗能機製、塑性變形模式等多角度分析論證瞭鑄鋼模塊化節點不同于傳統銲接節點的性能特點。研究結果錶明,新型鑄鋼模塊化節點的抗震性能優于傳統銲接節點,可以在不損失延性的情況下充分髮揮抗震鋼結構體繫的耗能能力。
개소료주강건재강결구체계우기시량주광가중적응용화연구현상。기우이용절점역은정소성모능적이념제출일충괄용우방(구)형강관주-H 형량광가련접적주강모괴화절점형식급기설계방법。대주강모괴화절점화전통한접절점진행료단조가재화순배왕복가재비선성유한원모의,병인입단렬지수대절점재소성대변형조건하발생연성단렬적경향대소작출평개。종강도、승재력、연성、모능능력、모능궤제、소성변형모식등다각도분석론증료주강모괴화절점불동우전통한접절점적성능특점。연구결과표명,신형주강모괴화절점적항진성능우우전통한접절점,가이재불손실연성적정황하충분발휘항진강결구체계적모능능력。
Application and current research status of cast steel in steel structures,especially,in steel frames were introduced.A cast modular joint appropriate for rectangle or square tubular column-H-beam connections and its design approaches were proposed,based on the concept of utilizing stable plastic energy dissipation of a panel zone.Nonlinear finite element analyses were conducted to simulate monotonic loading and cyclic loading of cast modular joints and traditional welded connections.Rupture Index was introduced to evaluate the propensity for ductile fracture initiation of different joints under large plastic deformation.Energy dissipation features were analyzed and demonstrated from multiple aspects including stiffness,load carrying capacity,ductility,energy dissipation capacity,energy dissipation mechanism and plastic deformation modes.The study results showed that the proposed cast modular joint exhibits better aseismic performance than traditional welded connections do with sufficient developed energy dissipation capacity of aseismic structure systems on the premise of no ductility loss.