振动与冲击
振動與遲擊
진동여충격
JOURNAL OF VIBRATION AND SHOCK
2014年
21期
85-89
,共5页
核主成分分析%耦合隐马尔可夫模型%滚动轴承%故障诊断
覈主成分分析%耦閤隱馬爾可伕模型%滾動軸承%故障診斷
핵주성분분석%우합은마이가부모형%곤동축승%고장진단
KPCA%CHMM%rolling element bearing%fault diagnosis
针对多通道数据的有效融合能够更加准确地诊断轴承的故障,提出了一种基于KPCA和耦合隐马尔可夫模型(CHMM)的轴承故障诊断方法。首先,分别对轴承各通道的振动信号进行特征提取,获得特征向量。然后采用 KP-CA 对各通道的特征向量分别进行特征约减,获取主要的信息成分。最后,利用 CHMM对多通道信息进行融合和故障诊断。通过对滚动轴承在正常、内圈故障、外圈故障和滚动体故障状态下实验数据的分析表明,该方法能够更加有效地诊断轴承的故障。
針對多通道數據的有效融閤能夠更加準確地診斷軸承的故障,提齣瞭一種基于KPCA和耦閤隱馬爾可伕模型(CHMM)的軸承故障診斷方法。首先,分彆對軸承各通道的振動信號進行特徵提取,穫得特徵嚮量。然後採用 KP-CA 對各通道的特徵嚮量分彆進行特徵約減,穫取主要的信息成分。最後,利用 CHMM對多通道信息進行融閤和故障診斷。通過對滾動軸承在正常、內圈故障、外圈故障和滾動體故障狀態下實驗數據的分析錶明,該方法能夠更加有效地診斷軸承的故障。
침대다통도수거적유효융합능구경가준학지진단축승적고장,제출료일충기우KPCA화우합은마이가부모형(CHMM)적축승고장진단방법。수선,분별대축승각통도적진동신호진행특정제취,획득특정향량。연후채용 KP-CA 대각통도적특정향량분별진행특정약감,획취주요적신식성분。최후,이용 CHMM대다통도신식진행융합화고장진단。통과대곤동축승재정상、내권고장、외권고장화곤동체고장상태하실험수거적분석표명,해방법능구경가유효지진단축승적고장。
The fusion of multi-channel bearing monitoring information can obtain more accurate results in bearing fault diagnosis.Here,a rolling element bearing fault diagnosis scheme based on KPCA and coupled hidden Markov model (CHMM) was presented.At first,the features were extracted from bearing vibration signals of multi-channel, respectively.Then,the KPCA was utilized to reduce the feature dimensions.At last,the new KPCA features were input into a CHMMto be fused and to diagnose bearing faults.The data acquired from bearings’states under normal conditions, and states with inner race faults,outer race faults and rolling body faults were analyzed.The results demonstrated the effectiveness and validity of the proposed method.