农机化研究
農機化研究
농궤화연구
JOURNAL OF AGRICULTURAL MECHANIZATION RESEARCH
2015年
5期
212-215
,共4页
可见/近红外%梨枣%轻微损伤%光谱
可見/近紅外%梨棘%輕微損傷%光譜
가견/근홍외%리조%경미손상%광보
near-infrared spectroscopy ( VIS/NIR)%“Lizao” jujube%subtle bruise%spectroscopy
利用可见/近红外光谱技术对梨枣轻微损伤的分类判别建模方法进行研究。分别采用 PLS-LDA (线性)和LS-SVM (非线性)建立判别模型,分析比较不同预处理方式和建模波段对模型精度的影响。结果表明:经9点平滑预处理后的短波近红外(780~1100nm)PLS-LDA模型判别效果最佳,校正集和预测集的正确识别率分别达到97.8%和96.7%。
利用可見/近紅外光譜技術對梨棘輕微損傷的分類判彆建模方法進行研究。分彆採用 PLS-LDA (線性)和LS-SVM (非線性)建立判彆模型,分析比較不同預處理方式和建模波段對模型精度的影響。結果錶明:經9點平滑預處理後的短波近紅外(780~1100nm)PLS-LDA模型判彆效果最佳,校正集和預測集的正確識彆率分彆達到97.8%和96.7%。
이용가견/근홍외광보기술대리조경미손상적분류판별건모방법진행연구。분별채용 PLS-LDA (선성)화LS-SVM (비선성)건립판별모형,분석비교불동예처리방식화건모파단대모형정도적영향。결과표명:경9점평활예처리후적단파근홍외(780~1100nm)PLS-LDA모형판별효과최가,교정집화예측집적정학식별솔분별체도97.8%화96.7%。
Classification discrimination models of subtle bruise “Lizao” jujubes were studied by using visible/near-infra-red spectroscopy .The least squares-support vector machine ( LS-SVM) and partial least squares-line discriminant anal-ysis( PLS-LDA) were applied to develop classification models , which based on different spectra pretreatments and differ-ent modeling wavelength bands .The results indicated that the best discrimination model was PLS -LDA model using Savitzky-Golay of 9 in the range of 780~1100nm, for the calibration and prediction set of PLS-LDA model, the dis-crimination rate was 97.8% and 96.7%, respectively.