大地构造与成矿学
大地構造與成礦學
대지구조여성광학
GETECTONICA ET METALLOGENIA
2014年
4期
939-953
,共15页
李艳军%魏俊浩%陈华勇%李欢%陈冲%侯本俊
李豔軍%魏俊浩%陳華勇%李歡%陳遲%侯本俊
리염군%위준호%진화용%리환%진충%후본준
铝质A型花岗岩%锆石U-Pb定年%岩石成因%造山后伸展%义敦岛弧带
鋁質A型花崗巖%鋯石U-Pb定年%巖石成因%造山後伸展%義敦島弧帶
려질A형화강암%고석U-Pb정년%암석성인%조산후신전%의돈도호대
aluminous A-type granite%zircon U-Pb dating%petrogenesis%post-collisional extension%Yidun island arc belt
义敦岛弧带晚中生代侵入岩体目前仍缺乏高精度的年代学数据制约,其成因也存在争论。作者首次在岛弧带中段夏塞银铅锌多金属矿区发现与成矿关系密切的黑云母二长花岗岩。本文对其开展了年代学、地球化学和 Hf 同位素分析,探讨成因及构造背景。LA-ICP-MS锆石U-Pb定年结果为103±1 Ma(MSWD=0.5),为早白垩世晚期岩浆活动产物。花岗岩属高钾钙碱性岩系,具有高硅、富碱和铁、贫钙和镁特征, SiO2含量为72.94%~74.98%, K2O+Na2O=7.56%~8.08%,铝饱和指数 A/CNK=1.06~1.10,属弱过铝质岩石。岩石富集 Zr、Hf 等高场强元素和 U、Th 等大离子亲石元素,明显亏损Ba和Sr。REE具有明显的Eu负异常(δEu=0.13~0.25),总体呈较陡右倾的LREE富集和HREE相对亏损特征。岩相学和地球化学显示其为铝质A型花岗岩。Hf同位素组成εHf(t)=–2.7~0.6,二阶段模式年龄TDM2=925~1095 Ma。地球化学及Hf同位素揭示夏塞岩体为软流圈地幔与壳源长英质岩浆混合成因,并经历了斜长石、正长石和褐帘石等矿物的分离结晶。夏塞花岗岩体具有后碰撞花岗岩特征,形成于早白垩世晚期弧-陆碰撞造山后伸展构造背景。
義敦島弧帶晚中生代侵入巖體目前仍缺乏高精度的年代學數據製約,其成因也存在爭論。作者首次在島弧帶中段夏塞銀鉛鋅多金屬礦區髮現與成礦關繫密切的黑雲母二長花崗巖。本文對其開展瞭年代學、地毬化學和 Hf 同位素分析,探討成因及構造揹景。LA-ICP-MS鋯石U-Pb定年結果為103±1 Ma(MSWD=0.5),為早白堊世晚期巖漿活動產物。花崗巖屬高鉀鈣堿性巖繫,具有高硅、富堿和鐵、貧鈣和鎂特徵, SiO2含量為72.94%~74.98%, K2O+Na2O=7.56%~8.08%,鋁飽和指數 A/CNK=1.06~1.10,屬弱過鋁質巖石。巖石富集 Zr、Hf 等高場彊元素和 U、Th 等大離子親石元素,明顯虧損Ba和Sr。REE具有明顯的Eu負異常(δEu=0.13~0.25),總體呈較陡右傾的LREE富集和HREE相對虧損特徵。巖相學和地毬化學顯示其為鋁質A型花崗巖。Hf同位素組成εHf(t)=–2.7~0.6,二階段模式年齡TDM2=925~1095 Ma。地毬化學及Hf同位素揭示夏塞巖體為軟流圈地幔與殼源長英質巖漿混閤成因,併經歷瞭斜長石、正長石和褐簾石等礦物的分離結晶。夏塞花崗巖體具有後踫撞花崗巖特徵,形成于早白堊世晚期弧-陸踫撞造山後伸展構造揹景。
의돈도호대만중생대침입암체목전잉결핍고정도적년대학수거제약,기성인야존재쟁론。작자수차재도호대중단하새은연자다금속광구발현여성광관계밀절적흑운모이장화강암。본문대기개전료년대학、지구화학화 Hf 동위소분석,탐토성인급구조배경。LA-ICP-MS고석U-Pb정년결과위103±1 Ma(MSWD=0.5),위조백성세만기암장활동산물。화강암속고갑개감성암계,구유고규、부감화철、빈개화미특정, SiO2함량위72.94%~74.98%, K2O+Na2O=7.56%~8.08%,려포화지수 A/CNK=1.06~1.10,속약과려질암석。암석부집 Zr、Hf 등고장강원소화 U、Th 등대리자친석원소,명현우손Ba화Sr。REE구유명현적Eu부이상(δEu=0.13~0.25),총체정교두우경적LREE부집화HREE상대우손특정。암상학화지구화학현시기위려질A형화강암。Hf동위소조성εHf(t)=–2.7~0.6,이계단모식년령TDM2=925~1095 Ma。지구화학급Hf동위소게시하새암체위연류권지만여각원장영질암장혼합성인,병경력료사장석、정장석화갈렴석등광물적분리결정。하새화강암체구유후팽당화강암특정,형성우조백성세만기호-륙팽당조산후신전구조배경。
Many Late Mesozoic granites distribute in the Yidun island arc belt, SW China. However, in situ zircon U-Pb ages and Hf isotopic data of these granites have rarely been reported so far. As lately reported granite from the central segment of the Yidun island arc belt, the Xiasai granite has a close genetic relationship with the Xiasai Ag-Pb-Zn <br> polymetallic deposit. This paper presents (1) laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb age for the Xiasai granite to determine precisely the time of the magmatism, (2) geochemical and Hf isotope data for the Xiasai granite to constrain the petrogenesis and tectonic setting. The LA-ICP-MS analyses of zircon from the Xiasai granite yielded a weighted mean206Pb/238U age of 103±1 Ma (MSWD=0.5), indicating that it was emplaced in the Early Cretaceous. Petrography and chemical compositions of the granites show that they belong to high-K calc-alkaline series and are characterized by high silicon, enrichment of alkaline and iron but depletion in calcium and magnesium. Their SiO2 and K2O+Na2O contents are 72.94%-74.98% and 7.56%-8.08%, respectively. The A/CNK values vary from 1.06 to 1.10, show a weak peraluminous affinity. The granitic rocks are enriched in high field strength elements (e.g. Zr and Hf) and large ion lithophile elements (e.g. U and Th) but depleted in Ba, Sr, P, and Ti. REEs are characterized by significant negative Eu anomalies (δEu=0.13-0.25) and exhibit right-inclined patterns with LREE enrichment but HREE depletion. Mineralogy and geochemistry of the rocks show an affinity to aluminous A-type granite, similar to other Late Cretaceous A-type granites such as the Rongyicuo, Lianlong and Ruorolong granites in the Yidun island arc belt. Zircon Hf isotopic compositions of the Xiasai granite are characterized byεHf(t) values varying from 2.7 to 0.6 and the two-stage model ages (TDM2) of 925 Ma to 1095 Ma, implying that different source materials have contributed to the magma genesis. Integrated geological, geochemical and isotopic data suggest that the Xiasai A-type granite is most likely generated via a two-stage process, including formation of parental magma by mixing of an asthenosphere-derived magma and a crustal-derived felsic magma in the deep crust, followed by intensive magmatic differentiation of the parental magma. These granites are likely to have been generated in a post-collisional extensional tectonic setting related to arc-continent collision during the Early Cretaceous.