波谱学杂志
波譜學雜誌
파보학잡지
CHINESE JOURNAL OF MAGNETIC RESONANCE
2014年
4期
449-464
,共16页
袁峰%王鹏飞%孔飞%许祥坤%石发展%杜江峰
袁峰%王鵬飛%孔飛%許祥坤%石髮展%杜江峰
원봉%왕붕비%공비%허상곤%석발전%두강봉
磁共振成像(MRI)%光探测磁共振%高分辨率成像%量子计算%NV色心
磁共振成像(MRI)%光探測磁共振%高分辨率成像%量子計算%NV色心
자공진성상(MRI)%광탐측자공진%고분변솔성상%양자계산%NV색심
magnetic resonance imaging%optically detected magnetic resonance%super-resolution imaging%quantum computation%nitrogen-vacancy center
20世纪90年代中期,随着Shor算法和Grover算法的提出,量子计算领域得到广泛关注。金刚石固态 NV 色心方案作为量子计算机热门物理实现方案之一,因其在室温下的超长相干时间和可精确操控等独特优势而备受青睐;此外,NV色心还有望通过磁共振成像方式实现单核自旋探测。然而NV色心固态量子计算的一种扩展方式受限于相邻NV色心之间的磁偶极相互作用,要求两个 NV 色心之间相距只有数十纳米。这一尺度远小于普通远场光学的分辨率,即光学衍射极限,采用传统的共聚焦方法已无法分辨。受激发射损耗(STED)和基态损耗(GSD)等超分辨成像技术能够突破光学衍射极限限制,达到纳米量级的分辨率;同时结合最新的金刚石表面微纳刻蚀技术,可实现 NV 色心固态量子计算中不同色心的分辨和精确定位。该文从固态金刚石 NV 色心体系和光学衍射等主要方面对利用STED和GSD高分辨成像技术提高传统共聚焦显微镜对NV色心体系成像分辨率进行简要的介绍,并结合实例介绍一些最新的研究进展。
20世紀90年代中期,隨著Shor算法和Grover算法的提齣,量子計算領域得到廣汎關註。金剛石固態 NV 色心方案作為量子計算機熱門物理實現方案之一,因其在室溫下的超長相榦時間和可精確操控等獨特優勢而備受青睞;此外,NV色心還有望通過磁共振成像方式實現單覈自鏇探測。然而NV色心固態量子計算的一種擴展方式受限于相鄰NV色心之間的磁偶極相互作用,要求兩箇 NV 色心之間相距隻有數十納米。這一呎度遠小于普通遠場光學的分辨率,即光學衍射極限,採用傳統的共聚焦方法已無法分辨。受激髮射損耗(STED)和基態損耗(GSD)等超分辨成像技術能夠突破光學衍射極限限製,達到納米量級的分辨率;同時結閤最新的金剛石錶麵微納刻蝕技術,可實現 NV 色心固態量子計算中不同色心的分辨和精確定位。該文從固態金剛石 NV 色心體繫和光學衍射等主要方麵對利用STED和GSD高分辨成像技術提高傳統共聚焦顯微鏡對NV色心體繫成像分辨率進行簡要的介紹,併結閤實例介紹一些最新的研究進展。
20세기90년대중기,수착Shor산법화Grover산법적제출,양자계산영역득도엄범관주。금강석고태 NV 색심방안작위양자계산궤열문물리실현방안지일,인기재실온하적초장상간시간화가정학조공등독특우세이비수청래;차외,NV색심환유망통과자공진성상방식실현단핵자선탐측。연이NV색심고태양자계산적일충확전방식수한우상린NV색심지간적자우겁상호작용,요구량개 NV 색심지간상거지유수십납미。저일척도원소우보통원장광학적분변솔,즉광학연사겁한,채용전통적공취초방법이무법분변。수격발사손모(STED)화기태손모(GSD)등초분변성상기술능구돌파광학연사겁한한제,체도납미량급적분변솔;동시결합최신적금강석표면미납각식기술,가실현 NV 색심고태양자계산중불동색심적분변화정학정위。해문종고태금강석 NV 색심체계화광학연사등주요방면대이용STED화GSD고분변성상기술제고전통공취초현미경대NV색심체계성상분변솔진행간요적개소,병결합실례개소일사최신적연구진전。
Quantum computation has been drawing more and more attentions, since the Shor's algorithm and Grover's algorithm are proposed in the middle 1990s. Among the systems being pursued for physically implementing a quantum computer, the diamond solid-state quantum computation, which use the electronic or nuclear spins of nitrogen-vacancy (NV) centers as qubits, is considered more favorable because it has a super long coherence time at room temperature and precise manipulations for the system are readily available. In addition, NV centers may be used for single spin detection by magnetic resonance. For NV centers with a distance of tens of nanometers among them, the inter-center force will be strong enough to establish a quantum computer. However, the conventional confocal microscopy can only be used to resolve centers that are more than two hundred nanometers away from each other. Super-resolution microscopy techniques, such as stimulated emission depletion (STED) and ground state depletion (GSD), may provide a way to resolve NV centers with a resolution beyond the diffraction limit. In recent year, super-resolution microscopy has been used in combination with advanced surface processing technology for accurate positioning of NV centers in diamond. In this paper, we briefly summarize the super-resolution microscopy techniques that have been used in diamond solid-state quantum computation, and reviewed the latest developments in the field.