国防科技大学学报
國防科技大學學報
국방과기대학학보
JOURNAL OF NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY
2014年
5期
87-92
,共6页
张茜%郭金库%余志勇%刘光斌
張茜%郭金庫%餘誌勇%劉光斌
장천%곽금고%여지용%류광빈
压缩感知%信号重构%小波树模型%分层连通树
壓縮感知%信號重構%小波樹模型%分層連通樹
압축감지%신호중구%소파수모형%분층련통수
compressive sensing%signal reconstruction%wavelet tree%hierarchical connected tree
基于小波树模型的压缩感知可以通过较少的观测量得到鲁棒的信号重构,但采用最优树逼近时,则存在复杂度大的问题。在证明分层后的小波树仍然具备连通树性质的基础上,提出了基于小波分层连通树结构的压缩重构算法,在与原观测量一致的情况下,保证了重构精度并且提高了重构效率。实验结果表明,改进算法相对于原算法在处理大尺度数据时,效率有明显的改善。
基于小波樹模型的壓縮感知可以通過較少的觀測量得到魯棒的信號重構,但採用最優樹逼近時,則存在複雜度大的問題。在證明分層後的小波樹仍然具備連通樹性質的基礎上,提齣瞭基于小波分層連通樹結構的壓縮重構算法,在與原觀測量一緻的情況下,保證瞭重構精度併且提高瞭重構效率。實驗結果錶明,改進算法相對于原算法在處理大呎度數據時,效率有明顯的改善。
기우소파수모형적압축감지가이통과교소적관측량득도로봉적신호중구,단채용최우수핍근시,칙존재복잡도대적문제。재증명분층후적소파수잉연구비련통수성질적기출상,제출료기우소파분층련통수결구적압축중구산법,재여원관측량일치적정황하,보증료중구정도병차제고료중구효솔。실험결과표명,개진산법상대우원산법재처리대척도수거시,효솔유명현적개선。
The model-based compressive sensing (CS ) dictated that robust signal reconstruction was possible to obtain from fewer measurements,but the computational complexity of this approach was large while using the optimal tree approximation with wavelets.Based on the testified result that the wavelet hierarchical tree was still connected,the model-based wavelet hierarchical connected tree CS algorithm,was proposed.The proposed algorithm which has the equivalent measurements with that of model-based CS can enhance the signal-reconstruction efficiency and guarantee the signal-reconstruction accuracy.Numerical simulations demonstrate the validity of the new algorithm.Furthermore,the proposed algorithm has a distinct advantage when dealing with the mass of data.