科技通报
科技通報
과기통보
BULLETIN OF SCIENCE AND TECHNOLOGY
2014年
11期
165-167,172
,共4页
携带%传感节点%高速运动%运动参数
攜帶%傳感節點%高速運動%運動參數
휴대%전감절점%고속운동%운동삼수
carry%a sensor node%high speed movement%motion parameters
传统依据卡曼尔滤波器的运动参数测试算法,受到人体高速运动目标信号模糊以及光电传感器畸变的干扰,测试的结果存在较大的误差问题,存在较大的弊端。提出一种应用光电传感器和优化卡曼尔滤波算法的携带传感节点高速运动参数测量方法,分析了光电传感器检测信号的原理,采用高精密光反射型传感器对携带传感节点运动目标信号进行探测,利用光电传感器探测反射光信号,将携带传感节点运动信号转换为电信号,通过信号调理将电路放大后,采用微控制器完成运动目标信号的采集,通过优化的卡尔曼算法,获取一套递推预测算法,以信号和噪声的状态空间模型为依据,基于前一时刻的预测值和当前时刻的预测值,调整携带传感节点高速运动下人体运动参数变量的预测值,动态调整检测噪声的协方差,对携带传感节点高速运动参数进行准确预测。实验检测结果表明,所提方法可对含传感节点的运动参数进行高效检测,该种算法精度高,可有效的降低高速运动目标的信号模糊和光电传感器畸变等因素产生的误差问题。
傳統依據卡曼爾濾波器的運動參數測試算法,受到人體高速運動目標信號模糊以及光電傳感器畸變的榦擾,測試的結果存在較大的誤差問題,存在較大的弊耑。提齣一種應用光電傳感器和優化卡曼爾濾波算法的攜帶傳感節點高速運動參數測量方法,分析瞭光電傳感器檢測信號的原理,採用高精密光反射型傳感器對攜帶傳感節點運動目標信號進行探測,利用光電傳感器探測反射光信號,將攜帶傳感節點運動信號轉換為電信號,通過信號調理將電路放大後,採用微控製器完成運動目標信號的採集,通過優化的卡爾曼算法,穫取一套遞推預測算法,以信號和譟聲的狀態空間模型為依據,基于前一時刻的預測值和噹前時刻的預測值,調整攜帶傳感節點高速運動下人體運動參數變量的預測值,動態調整檢測譟聲的協方差,對攜帶傳感節點高速運動參數進行準確預測。實驗檢測結果錶明,所提方法可對含傳感節點的運動參數進行高效檢測,該種算法精度高,可有效的降低高速運動目標的信號模糊和光電傳感器畸變等因素產生的誤差問題。
전통의거잡만이려파기적운동삼수측시산법,수도인체고속운동목표신호모호이급광전전감기기변적간우,측시적결과존재교대적오차문제,존재교대적폐단。제출일충응용광전전감기화우화잡만이려파산법적휴대전감절점고속운동삼수측량방법,분석료광전전감기검측신호적원리,채용고정밀광반사형전감기대휴대전감절점운동목표신호진행탐측,이용광전전감기탐측반사광신호,장휴대전감절점운동신호전환위전신호,통과신호조리장전로방대후,채용미공제기완성운동목표신호적채집,통과우화적잡이만산법,획취일투체추예측산법,이신호화조성적상태공간모형위의거,기우전일시각적예측치화당전시각적예측치,조정휴대전감절점고속운동하인체운동삼수변량적예측치,동태조정검측조성적협방차,대휴대전감절점고속운동삼수진행준학예측。실험검측결과표명,소제방법가대함전감절점적운동삼수진행고효검측,해충산법정도고,가유효적강저고속운동목표적신호모호화광전전감기기변등인소산생적오차문제。
Traditional algorithm based on kalman filter's motion parameters testing, by the high speed moving target signal interference to the distortion of the fuzzy and photoelectric sensor, the results of the test error of the larger problems, there is a big drawbacks. Put forward a kind of application of the photoelectric sensor and the optimization of the kalman filtering algorithm of sensor nodes to carry high speed motion parameters measurement method, the principle of photoelectric sensor detection signal is analyzed, using high precision optical reflective sensor to carry a sensor node moving target signal detection, using photoelectric sensor to detect the reflected light signal, will carry a sensor node movement signal into electrical signal, after amplification circuit for signal disposal, adopt micro controller to complete the moving target signal acquisition, by optimizing the kalman algorithm, to obtain a set of recursive prediction algorithm, based on state space model of signal and noise, based on the previous moment of predicted value and predictive value of the current time, adjust the sensor nodes to carry variables predicted under the high speed movement parameters, dynamic adjustment testing noise covariance, accurate projections for sensor nodes to carry high speed motion parameters. Experimental results show that the proposed method can be to detect contain movement parameters of the sensor nodes efficiently, this algorithm is of high precision, and can effectively reduce the high speed moving target fuzzy and photoelectric sensor signal distortion error of the factors such as the problem.