科技通报
科技通報
과기통보
BULLETIN OF SCIENCE AND TECHNOLOGY
2014年
11期
117-121,130
,共6页
云计算%资源调度%蝙蝠算法%高斯变异%差分
雲計算%資源調度%蝙蝠算法%高斯變異%差分
운계산%자원조도%편복산법%고사변이%차분
cloud computing%resource dispatch%bat algorithm%gaussian mutation%differentiation
为了最大限度优化云计算资源分配中的执行速度,平均响应时间和系统利用率,提出一种基于高斯差分变异蝙蝠算法(GDMBA)的云计算资源调度优化方法。首先引入高斯差分变异改进蝙蝠算法,避免蝙蝠个体陷入局部最优,改进后的算法加快了收敛速度,提高了收敛精度,然后采用GDMBA对资源调度进行寻优。仿真实验表明,GDMBA有效提高了算法性能,在云计算的资源调度中有效优化了云计算系统中的资源调度能力,提高了云计算资源的利用率。
為瞭最大限度優化雲計算資源分配中的執行速度,平均響應時間和繫統利用率,提齣一種基于高斯差分變異蝙蝠算法(GDMBA)的雲計算資源調度優化方法。首先引入高斯差分變異改進蝙蝠算法,避免蝙蝠箇體陷入跼部最優,改進後的算法加快瞭收斂速度,提高瞭收斂精度,然後採用GDMBA對資源調度進行尋優。倣真實驗錶明,GDMBA有效提高瞭算法性能,在雲計算的資源調度中有效優化瞭雲計算繫統中的資源調度能力,提高瞭雲計算資源的利用率。
위료최대한도우화운계산자원분배중적집행속도,평균향응시간화계통이용솔,제출일충기우고사차분변이편복산법(GDMBA)적운계산자원조도우화방법。수선인입고사차분변이개진편복산법,피면편복개체함입국부최우,개진후적산법가쾌료수렴속도,제고료수렴정도,연후채용GDMBA대자원조도진행심우。방진실험표명,GDMBA유효제고료산법성능,재운계산적자원조도중유효우화료운계산계통중적자원조도능력,제고료운계산자원적이용솔。
In order to best optimize the processing speed, average response time, and system efficiency of cloud computing's resource scheduling, a novel cloud resource scheduling optimization algorithm is proposed based on Gaussian Differential Mutation Bat Algorithm (GDMBA). At first, Gaussian differential mutation is employed in the improved Bat algorithm to prevent individual bats from being trapped in localized optima, to accelerate the converging speed, and to enhance the converging accuracy. Afterwards, GDMBA is employed to optimize the resource dispatching. Simulated experiment shows that GDMBA has significantly improved the algorithm's overall performance, significantly optimized the resource allocation capability in cloud computing system, and remarkably raised the resource utilization efficiency of the cloud computing.