舰船科学技术
艦船科學技術
함선과학기술
SHIP SCIENCE AND TECHNOLOGY
2014年
11期
23-28
,共6页
协同优化%混合策略%模拟退火%动态松弛量%悬臂梁
協同優化%混閤策略%模擬退火%動態鬆弛量%懸臂樑
협동우화%혼합책략%모의퇴화%동태송이량%현비량
collaborative optimization%mixed strategy%simulated annealing%dynamic relaxation factor%cantilever beam
多学科设计优化为复杂系统工程设计提供了新的思路并成为优化设计领域的研究热点。针对传统多学科协同优化算法常常出现无法收敛或收敛陷入局部最优的问题,提出基于模拟退火算法和序列二次算法的混合协同优化(collaborate optimization based on simulated annealing and sequential quadratic programming,SA-SQP-CO),SA-SQP-CO应用模拟退火算法和序列二次算法的混合优化策略取代传统系统级基于梯度的求解方法,同时引入动态松弛的思想,在二阶段寻优过程中采用动态松弛量代替系统级一致性等式约束加强学科一致性、提高系统级收敛效率。以经典齿轮减速箱测试算例,通过与传统多学科协同优化算法比较,验证了该方法在优化结果可靠性、稳定性等方面有优势。最后,应用SA-SQP-CO算法求解抛物线型载荷下纤维加强悬臂梁轻量化设计问题以体现其工程实用性。
多學科設計優化為複雜繫統工程設計提供瞭新的思路併成為優化設計領域的研究熱點。針對傳統多學科協同優化算法常常齣現無法收斂或收斂陷入跼部最優的問題,提齣基于模擬退火算法和序列二次算法的混閤協同優化(collaborate optimization based on simulated annealing and sequential quadratic programming,SA-SQP-CO),SA-SQP-CO應用模擬退火算法和序列二次算法的混閤優化策略取代傳統繫統級基于梯度的求解方法,同時引入動態鬆弛的思想,在二階段尋優過程中採用動態鬆弛量代替繫統級一緻性等式約束加彊學科一緻性、提高繫統級收斂效率。以經典齒輪減速箱測試算例,通過與傳統多學科協同優化算法比較,驗證瞭該方法在優化結果可靠性、穩定性等方麵有優勢。最後,應用SA-SQP-CO算法求解拋物線型載荷下纖維加彊懸臂樑輕量化設計問題以體現其工程實用性。
다학과설계우화위복잡계통공정설계제공료신적사로병성위우화설계영역적연구열점。침대전통다학과협동우화산법상상출현무법수렴혹수렴함입국부최우적문제,제출기우모의퇴화산법화서렬이차산법적혼합협동우화(collaborate optimization based on simulated annealing and sequential quadratic programming,SA-SQP-CO),SA-SQP-CO응용모의퇴화산법화서렬이차산법적혼합우화책략취대전통계통급기우제도적구해방법,동시인입동태송이적사상,재이계단심우과정중채용동태송이량대체계통급일치성등식약속가강학과일치성、제고계통급수렴효솔。이경전치륜감속상측시산례,통과여전통다학과협동우화산법비교,험증료해방법재우화결과가고성、은정성등방면유우세。최후,응용SA-SQP-CO산법구해포물선형재하하섬유가강현비량경양화설계문제이체현기공정실용성。
Multidiscipline design optimization provides a promising methodlogy for largr-scale system design and becomes an active field of optimization research. Facing the shortcomings of traditional collaborative optimization, such as time-consuming, being sensitive to the initial points ,not converging . A new collaborative optimization based on simulated annealing and sequential quadratic programming is presented. Firstly ,replacing the gradient-based method by the hybrid optimization strategy of the simulated annealing algorithm and sequential quadratic programming in system-level. Secondly, dynamic relaxation factor used in the optimization process to improve the convergence rate. Comparing with the traditional collaborative optimization methods via gearbox problem, the better convergence, stability and reliability of the presented collaborative optimization are demonstrated. Finaly,the new collaborative optimization is used to solve a continuous fiber-reinforced composite cantilever beam subject to a parabolic distributed load and a satisfied optimization result is also achieved.