电子学报
電子學報
전자학보
ACTA ELECTRONICA SINICA
2014年
11期
2219-2224
,共6页
孙玉宝%吴泽彬%吴敏%刘青山
孫玉寶%吳澤彬%吳敏%劉青山
손옥보%오택빈%오민%류청산
压缩感知%低秩先验%稀疏先验%增广拉格朗日乘子算法
壓縮感知%低秩先驗%稀疏先驗%增廣拉格朗日乘子算法
압축감지%저질선험%희소선험%증엄랍격랑일승자산법
compressed sensing%low rank prior%sparse prior%augmented Lagrange multiplier method
本文建立了一种新的高光谱图像压缩感知重建模型,编码端采用块对角的Noiselet测量矩阵对每一谱带进行独立采样,解码端首先建立高光谱图像低秩稀疏表示模型,分解为低秩与稀疏成分,并对低秩成分在空间维进行稀疏分解,进而构建联合谱间低秩性先验与谱内空间稀疏性先验的凸优化重建模型,并提出模型求解的增广拉格朗日乘子迭代算法,通过引入辅助变量与线性化技巧,使得每一子问题均存在解析解,降低了模型求解的复杂度。实验结果验证了本文模型及其算法的有效性。
本文建立瞭一種新的高光譜圖像壓縮感知重建模型,編碼耑採用塊對角的Noiselet測量矩陣對每一譜帶進行獨立採樣,解碼耑首先建立高光譜圖像低秩稀疏錶示模型,分解為低秩與稀疏成分,併對低秩成分在空間維進行稀疏分解,進而構建聯閤譜間低秩性先驗與譜內空間稀疏性先驗的凸優化重建模型,併提齣模型求解的增廣拉格朗日乘子迭代算法,通過引入輔助變量與線性化技巧,使得每一子問題均存在解析解,降低瞭模型求解的複雜度。實驗結果驗證瞭本文模型及其算法的有效性。
본문건립료일충신적고광보도상압축감지중건모형,편마단채용괴대각적Noiselet측량구진대매일보대진행독립채양,해마단수선건립고광보도상저질희소표시모형,분해위저질여희소성분,병대저질성분재공간유진행희소분해,진이구건연합보간저질성선험여보내공간희소성선험적철우화중건모형,병제출모형구해적증엄랍격랑일승자질대산법,통과인입보조변량여선성화기교,사득매일자문제균존재해석해,강저료모형구해적복잡도。실험결과험증료본문모형급기산법적유효성。
A new compressed sensing model is proposed to reconstruct hyperspectral image .In the encoder side ,block-dialog measurement matrix formed by permuted noiselets transform is used to randomly measure the signal of each channel independently . In the decoder side ,the low rank and sparse representation models are firstly constructed to decompose hyperspectral data matrix into low rank and sparse parts ,and the low rank part is further sparsely decomposed .Then ,the intra-channel low rank prior and the inter-channel sparse prior are jointly utilized to reconstruct the compressed data .A numerical optimization algorithm is also proposed to solve the reconstruction model by augmented lagrange multiplier method .Every sub-problem in the iteration formula admits analyti-cal solution after introducing auxiliary variable and linearization operation .The complexity of the numerical optimization algorithm is reduced .The experimental results verify the effectiveness of our algorithm .