化工学报
化工學報
화공학보
JOURNAL OF CHEMICAL INDUSY AND ENGINEERING (CHINA)
2014年
12期
4645-4654
,共10页
张文伟%柯鹏%杨春信%周成龙
張文偉%柯鵬%楊春信%週成龍
장문위%가붕%양춘신%주성룡
气液两相流%界面%多尺度%计算流体力学%可计算性
氣液兩相流%界麵%多呎度%計算流體力學%可計算性
기액량상류%계면%다척도%계산류체역학%가계산성
gas-liquid two-phase flow%interface%multi-scale%computational fluid dynamics%computability
气液两相流复杂多变的界面结构在瞬态时间上具有宽广的空间尺度范围。界面多尺度问题涉及化工领域、核安全领域以及其他多个领域,其可计算性是当前国内外气液两相流领域的研究焦点之一。分析了欧拉体系下处理气液两相流相界面不连续性的两种基本模型以及湍流模拟方法对界面结构的影响。针对离散流界面尺度分布性和混合流界面跨尺度性两类多尺度问题,分析了可计算性研究面临的困境,将其归因于网格尺度的约束、几何及物理边界的缺失。重点归纳了混合流界面跨尺度性问题的计算方法以及典型应用。最后对气液两相流界面多尺度问题提出了应对策略及研究趋势,为此类问题研究提供有益的参考。
氣液兩相流複雜多變的界麵結構在瞬態時間上具有寬廣的空間呎度範圍。界麵多呎度問題涉及化工領域、覈安全領域以及其他多箇領域,其可計算性是噹前國內外氣液兩相流領域的研究焦點之一。分析瞭歐拉體繫下處理氣液兩相流相界麵不連續性的兩種基本模型以及湍流模擬方法對界麵結構的影響。針對離散流界麵呎度分佈性和混閤流界麵跨呎度性兩類多呎度問題,分析瞭可計算性研究麵臨的睏境,將其歸因于網格呎度的約束、幾何及物理邊界的缺失。重點歸納瞭混閤流界麵跨呎度性問題的計算方法以及典型應用。最後對氣液兩相流界麵多呎度問題提齣瞭應對策略及研究趨勢,為此類問題研究提供有益的參攷。
기액량상류복잡다변적계면결구재순태시간상구유관엄적공간척도범위。계면다척도문제섭급화공영역、핵안전영역이급기타다개영역,기가계산성시당전국내외기액량상류영역적연구초점지일。분석료구랍체계하처리기액량상류상계면불련속성적량충기본모형이급단류모의방법대계면결구적영향。침대리산류계면척도분포성화혼합류계면과척도성량류다척도문제,분석료가계산성연구면림적곤경,장기귀인우망격척도적약속、궤하급물리변계적결실。중점귀납료혼합류계면과척도성문제적계산방법이급전형응용。최후대기액량상류계면다척도문제제출료응대책략급연구추세,위차류문제연구제공유익적삼고。
Gas-liquid two-phase flow has complex interface structures with a wide range of spatial scales in the transient time. The multi-scale interface problems are related to various fields, such as chemical engineering, nuclear safety, and so on. Computability of these problems is one of the research priorities. This paper analyzes basic models dealing with the discontinuity of phase interfaces in the Eulerian reference frame, and describes the influence relationship between turbulent simulation methods and interfaces. The difficulties of computability are analyzed for two types of multi-scale problems: scale distribution of interfaces in dispersed flows and cross-scale of interfaces in mixed flow. Two factors including the scale for computational grid and the loss of geometry and physical boundaries are concluded. The computing methods and typical applications in cross-scale of interfaces in mixed flow are summarized. The strategies and trends of the research on those multi-scale problems are proposed, providing useful guides for the research.