佳木斯大学学报(自然科学版)
佳木斯大學學報(自然科學版)
가목사대학학보(자연과학판)
JOURNAL OF JIAMUSI UNIVERSITY (NATURAL SCIENCE EDITION)
2014年
6期
947-949
,共3页
S -次仿紧%S -仿紧%半开覆盖,半闭覆盖%垫状
S -次倣緊%S -倣緊%半開覆蓋,半閉覆蓋%墊狀
S -차방긴%S -방긴%반개복개,반폐복개%점상
S-paracompact%S-subparacompact%semi-open refinement%semi-closed refinement%be cushioned in
针对一些广义仿紧空间以及拓扑空间中半开集和半闭集的性质,本文将次仿紧空间的一些结论推广到半闭集的条件下,新定义并研究S -次仿紧空间的基本性质。首先给出一些基本的定义和定理,然后在此基础上定义S-次仿紧空间,最后得出一些主要结果:(1)空间X是S-次仿紧空间,则X的每一开覆盖U,存在半开加细覆盖序列{Vn}n∈N使对每一x∈X,存在n∈N,使ord(x,Vn)=1,这里(ord(x,Vn)=|{V:V∈Vn,x∈V}|);(2)空间X是S-次仿紧空间,则X的每一开覆盖具有σ垫状加细覆盖;(3)如果(X,Fa)是S-次仿紧空间,则(X,F)也是S-次仿紧空间,并给出相应的证明。
針對一些廣義倣緊空間以及拓撲空間中半開集和半閉集的性質,本文將次倣緊空間的一些結論推廣到半閉集的條件下,新定義併研究S -次倣緊空間的基本性質。首先給齣一些基本的定義和定理,然後在此基礎上定義S-次倣緊空間,最後得齣一些主要結果:(1)空間X是S-次倣緊空間,則X的每一開覆蓋U,存在半開加細覆蓋序列{Vn}n∈N使對每一x∈X,存在n∈N,使ord(x,Vn)=1,這裏(ord(x,Vn)=|{V:V∈Vn,x∈V}|);(2)空間X是S-次倣緊空間,則X的每一開覆蓋具有σ墊狀加細覆蓋;(3)如果(X,Fa)是S-次倣緊空間,則(X,F)也是S-次倣緊空間,併給齣相應的證明。
침대일사엄의방긴공간이급탁복공간중반개집화반폐집적성질,본문장차방긴공간적일사결론추엄도반폐집적조건하,신정의병연구S -차방긴공간적기본성질。수선급출일사기본적정의화정리,연후재차기출상정의S-차방긴공간,최후득출일사주요결과:(1)공간X시S-차방긴공간,칙X적매일개복개U,존재반개가세복개서렬{Vn}n∈N사대매일x∈X,존재n∈N,사ord(x,Vn)=1,저리(ord(x,Vn)=|{V:V∈Vn,x∈V}|);(2)공간X시S-차방긴공간,칙X적매일개복개구유σ점상가세복개;(3)여과(X,Fa)시S-차방긴공간,칙(X,F)야시S-차방긴공간,병급출상응적증명。
Based on a series of generalized paracompact spaces and the properties of semi -open and semi-closed sets in topological spaces , some conclusions of sub -paracompact spaces were spread to semi -closed sets.The definition of S -subparacomact space was given and its basic properties was studied .Some basic defi-nitions and theorems in topological spaces were given first , and then the definition of S -subparacompact space was introduced .Some main results were obtained as follows: ( 1 ) Let X be a S-subparacompact space , then each open cover U of X has a semi-open n∈N refinements{Vn}n∈N and for every x∈X , there exists a positive integrity such that only belongs to one set of Vn ,i.e.ord( x,Vn ) =1 .(2) If X is a S-subparacompact space . Then each open cover U of X has a refinement which isσ-cushioned in the family U .(3) Suppose (X,Tα) is a S-subparacompact space.Then the space (X,T) is S-subparacompact.At same time, their corresponding proofs are presented .