工业催化
工業催化
공업최화
INDUSTRIAL CATALYSIS
2014年
11期
816-824
,共9页
能源化学%甲烷%催化燃烧%反应工艺%固定床%流化床
能源化學%甲烷%催化燃燒%反應工藝%固定床%流化床
능원화학%갑완%최화연소%반응공예%고정상%류화상
energy chemical%methane%catalytic combustion%reaction process%fixed bed%fluidized bed
甲烷催化燃烧是一种清洁高效的甲烷燃烧技术,在节能减排中具有重要的应用价值。从催化剂、反应工艺和过程强化等方面对近年来甲烷催化燃烧技术进行综述,重点介绍颗粒催化剂固定床反应工艺、整体式催化剂反应工艺、流化床反应工艺和吸放热耦合反应工艺研究进展。用于固定床反应器的颗粒催化剂主要为负载型贵金属催化剂和非贵金属氧化物催化剂。贵金属催化剂活性好,起燃温度低,适合低浓度甲烷的催化燃烧。非贵金属氧化物催化剂耐高温性好,适合较高浓度甲烷燃烧体系。整体式催化剂的甲烷催化燃烧反应工艺中,最常用的是蜂窝陶瓷和金属合金等整体式催化剂的多段式催化燃烧反应器的设计。设计直接采用多段式整体催化剂,催化剂的位置不同,发挥的催化作用也不同。流化床催化燃烧装置具有燃烧过程接触面积广、热容量大和换热效率高等特点,可有效避免传统的固定床催化燃烧反应工艺存在的问题,非常适合应用于低浓度甲烷的催化燃烧过程。利用甲烷催化燃烧强放热的特点,将催化燃烧产生的热量进行时间或空间的耦合,可以开发出吸-放热耦合反应工艺。其中,固定床催化反应器中的流向变换强制周期操作作为一种高效的过程强化技术,在节约反应器成本的同时,可以提高反应热量的利用率。
甲烷催化燃燒是一種清潔高效的甲烷燃燒技術,在節能減排中具有重要的應用價值。從催化劑、反應工藝和過程彊化等方麵對近年來甲烷催化燃燒技術進行綜述,重點介紹顆粒催化劑固定床反應工藝、整體式催化劑反應工藝、流化床反應工藝和吸放熱耦閤反應工藝研究進展。用于固定床反應器的顆粒催化劑主要為負載型貴金屬催化劑和非貴金屬氧化物催化劑。貴金屬催化劑活性好,起燃溫度低,適閤低濃度甲烷的催化燃燒。非貴金屬氧化物催化劑耐高溫性好,適閤較高濃度甲烷燃燒體繫。整體式催化劑的甲烷催化燃燒反應工藝中,最常用的是蜂窩陶瓷和金屬閤金等整體式催化劑的多段式催化燃燒反應器的設計。設計直接採用多段式整體催化劑,催化劑的位置不同,髮揮的催化作用也不同。流化床催化燃燒裝置具有燃燒過程接觸麵積廣、熱容量大和換熱效率高等特點,可有效避免傳統的固定床催化燃燒反應工藝存在的問題,非常適閤應用于低濃度甲烷的催化燃燒過程。利用甲烷催化燃燒彊放熱的特點,將催化燃燒產生的熱量進行時間或空間的耦閤,可以開髮齣吸-放熱耦閤反應工藝。其中,固定床催化反應器中的流嚮變換彊製週期操作作為一種高效的過程彊化技術,在節約反應器成本的同時,可以提高反應熱量的利用率。
갑완최화연소시일충청길고효적갑완연소기술,재절능감배중구유중요적응용개치。종최화제、반응공예화과정강화등방면대근년래갑완최화연소기술진행종술,중점개소과립최화제고정상반응공예、정체식최화제반응공예、류화상반응공예화흡방열우합반응공예연구진전。용우고정상반응기적과립최화제주요위부재형귀금속최화제화비귀금속양화물최화제。귀금속최화제활성호,기연온도저,괄합저농도갑완적최화연소。비귀금속양화물최화제내고온성호,괄합교고농도갑완연소체계。정체식최화제적갑완최화연소반응공예중,최상용적시봉와도자화금속합금등정체식최화제적다단식최화연소반응기적설계。설계직접채용다단식정체최화제,최화제적위치불동,발휘적최화작용야불동。류화상최화연소장치구유연소과정접촉면적엄、열용량대화환열효솔고등특점,가유효피면전통적고정상최화연소반응공예존재적문제,비상괄합응용우저농도갑완적최화연소과정。이용갑완최화연소강방열적특점,장최화연소산생적열량진행시간혹공간적우합,가이개발출흡-방열우합반응공예。기중,고정상최화반응기중적류향변환강제주기조작작위일충고효적과정강화기술,재절약반응기성본적동시,가이제고반응열량적이용솔。
Compared with the conventional flame combustion,the catalytic combustion of methane is a clean and efficient methane burning technology. It possesses an importance application value in the energy saving and the emission reduction. In this paper,the recent research progress in methane catalytic com-bustion such as the catalysts,catalytic combustion process,and methane catalytic combustion process intensification technologies were reviewed. Moreover,the methane catalytic combustion reaction process of the fixed bed with the particle catalysts,the monolithic catalysts,the fluidized bed,and the coupling of exothermic and endothermic reaction process were focused. The particle catalysts used in the fixed bed reactor mainly were noble metal catalysts and non-noble metal oxide catalysts. Noble metal catalysts with high activity and low light-off temperature were suitable for catalytic combustion of methane with low con-centration. Non-noble metal oxide catalysts with good resistance to high temperature were suitable for com-bustion system of methane with high concentration. Monolithic catalysts for methane catalytic combustion commonly used honeycomb ceramics and metal alloy as monolithic carriers. Monolithic catalysts were applied to the design process of sectionalized catalytic combustion reactor. The catalysts in different position play a different role. Fluidized bed catalytic combustion reactor with wide contact area,large combustion heat capacity and high thermal efficiency,which could effectively avoid the existing problems of traditional fixed bed catalytic combustion process,was suitable for application in the catalytic combustion of methane with low concentration. Methane catalytic combustion is a strongly exothermic reaction. An endothermic and exothermic coupling reaction technology was developed by the coupling of time or space of catalytic combustion heat. Among them,the fixed bed catalytic reactor reverse flow operation,as a highly efficient process intensification technology,could improve the utilization efficiency of reaction heat and save the cost of the reactor at the same time.