仪器仪表学报
儀器儀錶學報
의기의표학보
CHINESE JOURNAL OF SCIENTIFIC INSTRUMENT
2014年
11期
2440-2447
,共8页
张宇献%李松%李勇%王建辉
張宇獻%李鬆%李勇%王建輝
장우헌%리송%리용%왕건휘
多目标优化%非支配排序%量子位%实数编码%轧制规程
多目標優化%非支配排序%量子位%實數編碼%軋製規程
다목표우화%비지배배서%양자위%실수편마%알제규정
multi-objective optimization%non-dominated sorting%quantum-bits%real coding%rolling schedule
针对热连轧轧制规程优化问题,以等功率裕量和轧制能耗为优化目标函数建立热连轧轧制规程多目标优化模型,提出基于量子位实数编码的热连轧轧制规程多目标优化算法。该算法将免疫遗传算法框架与量子计算思想相结合,采用量子位实数编码,利用量子态干涉进行遗传算子的交叉和变异,同时保证非支配解按拥挤距离选择优势免疫抗体种群,得到 Pareto 全局最优解集。以某轧钢厂热连轧精轧机组为例,验证本文所提及算法的有效性。实例分析表明,所提及的算法在寻优能力和收敛速度上均优于传统的NSGA-II算法,能够获得更好的Pareto解集,有效地解决热连轧轧制规程多目标优化问题,改善了轧制能耗。
針對熱連軋軋製規程優化問題,以等功率裕量和軋製能耗為優化目標函數建立熱連軋軋製規程多目標優化模型,提齣基于量子位實數編碼的熱連軋軋製規程多目標優化算法。該算法將免疫遺傳算法框架與量子計算思想相結閤,採用量子位實數編碼,利用量子態榦涉進行遺傳算子的交扠和變異,同時保證非支配解按擁擠距離選擇優勢免疫抗體種群,得到 Pareto 全跼最優解集。以某軋鋼廠熱連軋精軋機組為例,驗證本文所提及算法的有效性。實例分析錶明,所提及的算法在尋優能力和收斂速度上均優于傳統的NSGA-II算法,能夠穫得更好的Pareto解集,有效地解決熱連軋軋製規程多目標優化問題,改善瞭軋製能耗。
침대열련알알제규정우화문제,이등공솔유량화알제능모위우화목표함수건립열련알알제규정다목표우화모형,제출기우양자위실수편마적열련알알제규정다목표우화산법。해산법장면역유전산법광가여양자계산사상상결합,채용양자위실수편마,이용양자태간섭진행유전산자적교차화변이,동시보증비지배해안옹제거리선택우세면역항체충군,득도 Pareto 전국최우해집。이모알강엄열련알정알궤조위례,험증본문소제급산법적유효성。실례분석표명,소제급적산법재심우능력화수렴속도상균우우전통적NSGA-II산법,능구획득경호적Pareto해집,유효지해결열련알알제규정다목표우화문제,개선료알제능모。
To optimize rolling schedule in hot continuous rolling, a multi-objective optimization model with optimized ob-jective function based on equal power allowance and rolling energy consumption is constructed, and a multi-objective optimi-zation algorithm based on quantum-bits real-coded is proposed for rolling schedule in a hot continuous rolling. The algorithm combines immune genetic algorithm framework with quantum computing idea, employs quantum-bits real coding, interferes crossover and mutation of genetic operator using the quantum state, and ensures the non-dominated solutions selecting advan-tage immune antibody population based on crowded distance so as to obtain the optimal Pareto solutions. Taking the finishing mill group in hot continuous rolling as an example, the effectiveness of the proposed algorithm is verified. The example analysis indicates that the optimization ability and convergence speed of the proposed algorithm are better than the traditional NSGA-II algorithm, which can obtain better Pareto solutions. The algorithm effectively solves the multi-objective optimization problem for the rolling schedule and improves the rolling energy consumption.