太原科技大学学报
太原科技大學學報
태원과기대학학보
JOURNAL OF TAIYUAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
2014年
6期
413-418
,共6页
混合高斯背景模型%前景检测%自适应学习率
混閤高斯揹景模型%前景檢測%自適應學習率
혼합고사배경모형%전경검측%자괄응학습솔
gaussian mixture model( GMM)%foreground detection%adaptive learning rate
在计算机视觉研究中,从视频序列中提取出前景目标是关键步骤之一。而混合高斯背景模型是前景目标检测的一种常用算法。针对传统混合高斯建模过程中分别对每个像素建立固定个数的高斯模型和相同的学习率这一缺陷,本文先对视频帧进行了分块处理,然后自适应的对每个像素块采取不同的高斯分布个数和学习率,并且在建模过程的不同时间段采用不同的学习率,最后对检测结果在空域上进行数学形态学的处理。实验结果表明,与传统检测方法相比,该方法能够更加准确和快速地检测出前景目标。
在計算機視覺研究中,從視頻序列中提取齣前景目標是關鍵步驟之一。而混閤高斯揹景模型是前景目標檢測的一種常用算法。針對傳統混閤高斯建模過程中分彆對每箇像素建立固定箇數的高斯模型和相同的學習率這一缺陷,本文先對視頻幀進行瞭分塊處理,然後自適應的對每箇像素塊採取不同的高斯分佈箇數和學習率,併且在建模過程的不同時間段採用不同的學習率,最後對檢測結果在空域上進行數學形態學的處理。實驗結果錶明,與傳統檢測方法相比,該方法能夠更加準確和快速地檢測齣前景目標。
재계산궤시각연구중,종시빈서렬중제취출전경목표시관건보취지일。이혼합고사배경모형시전경목표검측적일충상용산법。침대전통혼합고사건모과정중분별대매개상소건립고정개수적고사모형화상동적학습솔저일결함,본문선대시빈정진행료분괴처리,연후자괄응적대매개상소괴채취불동적고사분포개수화학습솔,병차재건모과정적불동시간단채용불동적학습솔,최후대검측결과재공역상진행수학형태학적처리。실험결과표명,여전통검측방법상비,해방법능구경가준학화쾌속지검측출전경목표。
The extraction of foreground object from a video sequence is one of the key steps in computer vision re-search. Gaussian mixture model is a kind of commonly-used foreground object detection algorithm. In view of the traditional Gaussian background model process to establish a fixed number of Gaussian model and the same learn-ing rate separately for each pixel,the video frame is divided into blocks firstly,then an adaptive different number of Gaussian distribution and different learning rate for each pixel block is taken at different times by using different modeling learning rate,finally the mathematical morphology for image post-processing in the space domain was ap-plied. The experimental results show that,compared with the traditional detection method,this method has the char-acteristics of quickness and accuracy,thus obtaining better prospects target detection results.