表面技术
錶麵技術
표면기술
SURFACE TECHNOLOGY
2014年
6期
105-110
,共6页
冷轧带钢%图像去噪%Shearlet变换%全变差模型
冷軋帶鋼%圖像去譟%Shearlet變換%全變差模型
랭알대강%도상거조%Shearlet변환%전변차모형
cold-rolled steel strip%image denoising%Shearlet transform%total variation model
目的有效去除生产现场所采集的带钢图像上的混合噪声。方法结合Shearlet变换具有较好的稀疏表示图像特征的性质与全变分各向异性扩散的优点,提出一种带钢图像去噪新算法。对Shearlet变换分解后的图像进行硬阈值处理,再进行Shearlet变换重构形成估计图像,采用改进自适应的变差正则化的极小化迭代模型对估计图像进行迭代修正。结果去噪后的图像具有很好的视觉效果,避免了伪吉布斯效应的产生。在强噪水平下,对比新模型与小波去噪,PSNR提高了约9 dB,均方差降低了约319。结论该方法获得了较好的峰值信噪比增益,使信号幅度有较高的保真度,具有更好的平滑噪声和边缘保持功能。
目的有效去除生產現場所採集的帶鋼圖像上的混閤譟聲。方法結閤Shearlet變換具有較好的稀疏錶示圖像特徵的性質與全變分各嚮異性擴散的優點,提齣一種帶鋼圖像去譟新算法。對Shearlet變換分解後的圖像進行硬閾值處理,再進行Shearlet變換重構形成估計圖像,採用改進自適應的變差正則化的極小化迭代模型對估計圖像進行迭代脩正。結果去譟後的圖像具有很好的視覺效果,避免瞭偽吉佈斯效應的產生。在彊譟水平下,對比新模型與小波去譟,PSNR提高瞭約9 dB,均方差降低瞭約319。結論該方法穫得瞭較好的峰值信譟比增益,使信號幅度有較高的保真度,具有更好的平滑譟聲和邊緣保持功能。
목적유효거제생산현장소채집적대강도상상적혼합조성。방법결합Shearlet변환구유교호적희소표시도상특정적성질여전변분각향이성확산적우점,제출일충대강도상거조신산법。대Shearlet변환분해후적도상진행경역치처리,재진행Shearlet변환중구형성고계도상,채용개진자괄응적변차정칙화적겁소화질대모형대고계도상진행질대수정。결과거조후적도상구유흔호적시각효과,피면료위길포사효응적산생。재강조수평하,대비신모형여소파거조,PSNR제고료약9 dB,균방차강저료약319。결론해방법획득료교호적봉치신조비증익,사신호폭도유교고적보진도,구유경호적평활조성화변연보지공능。
ABSTRACT:Objective To effectively remove mixed noise from the image of acquisition steel strip in the production field. Methods Combining the advantage of the Shearlet transform which has better properties to sparsely express the characteristics of the images and the total variational anisotropic diffusion, a new image denoising model was proposed. After Shearle transform decompo-sition, the image was processed by hard thresholding, and then the estimated image was formed after Shearle transform reconstruc-tion. The algorithm used iterative model of minimization of total variation regularization to correct the estimated image. Results The denoised image had good visual effect, and the creation of pseudo Gibbs effect was avoided. The comparison of the new model with wavelet denoising under the strong noise level showed that PSNR was increased by 9 dB and MSE was reduced by 319. Conclusion Numerical examples demonstrated that this method could achieve better PSNR gain, and the results showed that the filters had high fidelity of signal amplitude, and better function in smoothing noise and preserving edges.