表面技术
錶麵技術
표면기술
SURFACE TECHNOLOGY
2014年
6期
28-32
,共5页
低应力多冲碰撞%塑性变形%梯度材料
低應力多遲踫撞%塑性變形%梯度材料
저응력다충팽당%소성변형%제도재료
repeated impact under low stress%plastic deformation%gradient material
目的研究梯度材料抗低应力多冲碰撞塑性变形能力。方法对纯铁材料、铁镍突变材料和铁镍梯度材料进行多次冲击碰撞试验,分析3种材料的累积变形量、不同层深处的应变和形变硬化程度、表面微观组织。结果总形变量、不同层深处的应变和形变硬化程度方面,纯铁材料略大于铁镍突变材料,远大于铁镍梯度材料。铁镍突变材料和纯铁材料表层为单相多晶组织,且界面密度较小;铁镍梯度材料表层为多相多晶组织,且界面的密度大,其形变被抑制。结论铁镍梯度材料的抗低应力多冲碰撞塑性变形的能力最强,铁镍突变材料次之,纯铁材料最差。
目的研究梯度材料抗低應力多遲踫撞塑性變形能力。方法對純鐵材料、鐵鎳突變材料和鐵鎳梯度材料進行多次遲擊踫撞試驗,分析3種材料的纍積變形量、不同層深處的應變和形變硬化程度、錶麵微觀組織。結果總形變量、不同層深處的應變和形變硬化程度方麵,純鐵材料略大于鐵鎳突變材料,遠大于鐵鎳梯度材料。鐵鎳突變材料和純鐵材料錶層為單相多晶組織,且界麵密度較小;鐵鎳梯度材料錶層為多相多晶組織,且界麵的密度大,其形變被抑製。結論鐵鎳梯度材料的抗低應力多遲踫撞塑性變形的能力最彊,鐵鎳突變材料次之,純鐵材料最差。
목적연구제도재료항저응력다충팽당소성변형능력。방법대순철재료、철얼돌변재료화철얼제도재료진행다차충격팽당시험,분석3충재료적루적변형량、불동층심처적응변화형변경화정도、표면미관조직。결과총형변량、불동층심처적응변화형변경화정도방면,순철재료략대우철얼돌변재료,원대우철얼제도재료。철얼돌변재료화순철재료표층위단상다정조직,차계면밀도교소;철얼제도재료표층위다상다정조직,차계면적밀도대,기형변피억제。결론철얼제도재료적항저응력다충팽당소성변형적능력최강,철얼돌변재료차지,순철재료최차。
ABSTRACT:Objective To study the resistance to plastic deformation of iron-nickel gradient materials under the low and repeated impact stress. Methods Repeated impact tests were conducted on pure iron material, iron-nickel mutation material and iron-nickel gradient material. The cumulative deformation, strain and deformation hardening degree with different depths, and the surface mi-crostructure were analyzed and compared. Results The total deformation, strain and deformation hardening degree with different depths of the pure iron material were a little larger than those of the iron-nickel mutation material, and much larger than those of the iron-nickel gradient material. The surface of the pure iron material and the iron-nickel mutation material was single-phase polycrys-talline structure and the density of interface was small. The surface of the iron-nickel gradient material was multiphase polycrystal-line structure, the density of interface was larger, and the plastic deformation was more suppressed. Conclusion For the resistance ability to plastic deformation under the low and repeated impact stress, the iron-nickel gradient material was the strongest, followed by the iron-nickel mutation material, and the pure iron material specimen was the worst.