光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2014年
12期
3253-3256
,共4页
许文丽%孙通%胡田%胡涛%刘木华
許文麗%孫通%鬍田%鬍濤%劉木華
허문려%손통%호전%호도%류목화
可见/近红外%黄花梨%CARS%FICA%LS-SVM%可溶性固形物
可見/近紅外%黃花梨%CARS%FICA%LS-SVM%可溶性固形物
가견/근홍외%황화리%CARS%FICA%LS-SVM%가용성고형물
Visible/near infrared%Huanghua pear%CARS%FICA%LS-SVM%Soluble solids content
为建立预测能力高、稳定性强的可见/近红外漫透射光谱无损检测黄花梨可溶性固形物(SSC )数学模型,对比各种预处理方法、变量优选方法、快速独立主成分分析(FICA )以及最小二乘支持向量机(LS-SVM )对黄花梨SSC模型的影响,得出最佳的组合方法用于建立黄花梨可溶性固形物(SSC)预测模型。采用Quality Spec型光谱仪采集550~950 nm波段范围内的黄花梨漫透射光谱并采用遗传算法、连续投影算法和CARS(competitive adaptive reweighted sampling )三种方法筛选黄花梨可溶性固形物的光谱特征变量,再结合FICA提取光谱主成分,最后采用LS-SVM建立黄花梨的SSC预测模型。结果显示,采用CARS筛选的21个变量,经FICA挑选出12个主成分数,联合LS-SVM所建立的CARS-FICA-LS-SVM黄花梨SSC预测模型性能最佳,建模集和预测集的决定系数及均方根误差分别为0.974,0.116%和0.918,0.158%,同直接采用PL S方法建模相比,变量数从401个下降到21,主成分数由14下降到12,建模集和预测集决定系数分别上升了0.023,0.019,而建模和预测均方根误差分别下降了0.042%和0.010%。CARS-FICA-LS-SVM 建立黄花梨SSC预测模型能够有效地简化预测模型并提高预测模型精度。
為建立預測能力高、穩定性彊的可見/近紅外漫透射光譜無損檢測黃花梨可溶性固形物(SSC )數學模型,對比各種預處理方法、變量優選方法、快速獨立主成分分析(FICA )以及最小二乘支持嚮量機(LS-SVM )對黃花梨SSC模型的影響,得齣最佳的組閤方法用于建立黃花梨可溶性固形物(SSC)預測模型。採用Quality Spec型光譜儀採集550~950 nm波段範圍內的黃花梨漫透射光譜併採用遺傳算法、連續投影算法和CARS(competitive adaptive reweighted sampling )三種方法篩選黃花梨可溶性固形物的光譜特徵變量,再結閤FICA提取光譜主成分,最後採用LS-SVM建立黃花梨的SSC預測模型。結果顯示,採用CARS篩選的21箇變量,經FICA挑選齣12箇主成分數,聯閤LS-SVM所建立的CARS-FICA-LS-SVM黃花梨SSC預測模型性能最佳,建模集和預測集的決定繫數及均方根誤差分彆為0.974,0.116%和0.918,0.158%,同直接採用PL S方法建模相比,變量數從401箇下降到21,主成分數由14下降到12,建模集和預測集決定繫數分彆上升瞭0.023,0.019,而建模和預測均方根誤差分彆下降瞭0.042%和0.010%。CARS-FICA-LS-SVM 建立黃花梨SSC預測模型能夠有效地簡化預測模型併提高預測模型精度。
위건립예측능력고、은정성강적가견/근홍외만투사광보무손검측황화리가용성고형물(SSC )수학모형,대비각충예처리방법、변량우선방법、쾌속독립주성분분석(FICA )이급최소이승지지향량궤(LS-SVM )대황화리SSC모형적영향,득출최가적조합방법용우건립황화리가용성고형물(SSC)예측모형。채용Quality Spec형광보의채집550~950 nm파단범위내적황화리만투사광보병채용유전산법、련속투영산법화CARS(competitive adaptive reweighted sampling )삼충방법사선황화리가용성고형물적광보특정변량,재결합FICA제취광보주성분,최후채용LS-SVM건립황화리적SSC예측모형。결과현시,채용CARS사선적21개변량,경FICA도선출12개주성분수,연합LS-SVM소건립적CARS-FICA-LS-SVM황화리SSC예측모형성능최가,건모집화예측집적결정계수급균방근오차분별위0.974,0.116%화0.918,0.158%,동직접채용PL S방법건모상비,변량수종401개하강도21,주성분수유14하강도12,건모집화예측집결정계수분별상승료0.023,0.019,이건모화예측균방근오차분별하강료0.042%화0.010%。CARS-FICA-LS-SVM 건립황화리SSC예측모형능구유효지간화예측모형병제고예측모형정도。
The purpose of this study was to establish a mathematical model of the visible/near-infrared (Vis/NIR) diffuse trans-mission spectroscopy with fine stability and precise predictability for the non destructive testing of the soluble solids content of huanghua pear ,through comparing the effects of various pretreatment methods ,variable optimization method ,fast independent principal component analysis (FICA ) and least squares support vector machines (LS-SVM ) on mathematica model for SSC of huanghua pear ,and the best combination of methods to establish model for SSC of huanghua pear was got .Vis/NIR diffuse transmission spectra of huanghua pear were acquired by a Quality Spec spectrometer ,three methods including genetic algorithm , successive projections algorithm and competitive adaptive reweighted sampling (CARS) were used firstly to select characteristic variables from spectral data of huanghua pears in the wavelength range of 550~950 nm ,and then FICA was used to extract fac-tors from the characteristic variables ,finally ,validation model for SSC in huanghua pears was built by LS-SVM on the basic of those parameters got above .The results showed that using LS-SVM on the foundation of the 21 variables screened by CARS and the 12 factors selected by FICA ,the CARS-FICA-LS-SVM regression model for SSC in huanghua pears was built and performed best ,the coefficient of determination and root mean square error of calibration and prediction sets were R2C =0.974 ,RMSEC=0.116% ,R2P=0.918 ,and RMSEP=0.158% respectively ,and compared with the mathematical model which uses PLS as mod-eling method ,the number of variables was down from 401 to 21 ,the factors were also down from 14 to 12 ,the coefficient of de-termination of modeling and prediction sets were up to 0.023 and 0.019 respectively ,while the root mean square errors of cali-bration and prediction sets were reduced by 0.042% and 0.010% respectively .These experimental results showed that using CARS-FICA-LS-SVM to build regression model for the forecast of SSC in huanghua pears can simplify the prediction model and improve the detection precision .