高等数学研究
高等數學研究
고등수학연구
STUDIES IN COLLEGE MATHEMATICS
2014年
6期
8-9
,共2页
积分中值定理%严格单调数列%Young 不等式%H?lder不等式
積分中值定理%嚴格單調數列%Young 不等式%H?lder不等式
적분중치정리%엄격단조수렬%Young 불등식%H?lder불등식
Mean Value Theorem for Integrals%strictly increasing sequence%Young’s inequality%H?lder’s inequality
设ξn满足∫20 sinn x d x =π2 sinnξn (0<ξn <π2),利用H?lder不等式,可证数列{ξn}的严格单调性。
設ξn滿足∫20 sinn x d x =π2 sinnξn (0<ξn <π2),利用H?lder不等式,可證數列{ξn}的嚴格單調性。
설ξn만족∫20 sinn x d x =π2 sinnξn (0<ξn <π2),이용H?lder불등식,가증수렬{ξn}적엄격단조성。
An application of H?lder’s inequality presents an alternative proof of the strict monotonicity of theπsequence{ξn} ,whereξn is defined by the formula∫20 sinnxdx = π2 sinnξn(0 < ξn < π2 ) assured by the mean value theorem of integrals .