红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2014年
11期
3807-3812
,共6页
杨崇瑞%汪家升%盛新志%娄淑琴
楊崇瑞%汪傢升%盛新誌%婁淑琴
양숭서%왕가승%성신지%루숙금
激光诱导击穿光谱%基线校正%谱线识别%小波算法%人工神经网络
激光誘導擊穿光譜%基線校正%譜線識彆%小波算法%人工神經網絡
격광유도격천광보%기선교정%보선식별%소파산법%인공신경망락
laser﹣induced breakdown spectroscopy%baseline correction%line's recognition%wavelet transform%artificial neural network
基于分段光谱特征值提取法和小波变换算法等多个数据预处理方法,分别针对分段基线差异及光谱噪声等严重影响激光诱导击穿光谱(LIBS)信号质量的主要影响因素,开展光谱信号预处理研究。基于实验室LIBS实验装置,通过实验验证,基于多通道光谱仪不同波段光谱特征值提取,提出了一种简单易行的多组数据中特征值点连接的方法,有效地提高了LIBS光谱信号的基线平直度,并得出以小波变换算法进行LIBS谱线信号去噪的最佳算法参数。在上述工作的基础上,使用基于误差反向传播的人工神经网络方法,实现了纯铜和不锈钢等物质种类的有效识别,研究结果表明,综合利用多数据处理方法进行LIBS技术中光谱信号处理可以有效提高谱线分析和识别的质量。
基于分段光譜特徵值提取法和小波變換算法等多箇數據預處理方法,分彆針對分段基線差異及光譜譟聲等嚴重影響激光誘導擊穿光譜(LIBS)信號質量的主要影響因素,開展光譜信號預處理研究。基于實驗室LIBS實驗裝置,通過實驗驗證,基于多通道光譜儀不同波段光譜特徵值提取,提齣瞭一種簡單易行的多組數據中特徵值點連接的方法,有效地提高瞭LIBS光譜信號的基線平直度,併得齣以小波變換算法進行LIBS譜線信號去譟的最佳算法參數。在上述工作的基礎上,使用基于誤差反嚮傳播的人工神經網絡方法,實現瞭純銅和不鏽鋼等物質種類的有效識彆,研究結果錶明,綜閤利用多數據處理方法進行LIBS技術中光譜信號處理可以有效提高譜線分析和識彆的質量。
기우분단광보특정치제취법화소파변환산법등다개수거예처리방법,분별침대분단기선차이급광보조성등엄중영향격광유도격천광보(LIBS)신호질량적주요영향인소,개전광보신호예처리연구。기우실험실LIBS실험장치,통과실험험증,기우다통도광보의불동파단광보특정치제취,제출료일충간단역행적다조수거중특정치점련접적방법,유효지제고료LIBS광보신호적기선평직도,병득출이소파변환산법진행LIBS보선신호거조적최가산법삼수。재상술공작적기출상,사용기우오차반향전파적인공신경망락방법,실현료순동화불수강등물질충류적유효식별,연구결과표명,종합이용다수거처리방법진행LIBS기술중광보신호처리가이유효제고보선분석화식별적질량。
Based on multiple signal process methods, such as segmented spectral feature extraction and wavelet transform algorithm, the pre﹣spectrum signal treatment technique was investigated to decrease the difference of segmented spectral baseline and lower the spectral noise, and thus the signal quality in laser﹣induced breakdown spectroscopy (LIBS) was improved. Based on extracting the characteristic value in different spectral bands of multi﹣channel spectrometers, a simple method was presented to connect the characteristic value in different segmented data and effectively flats the signal baseline. Through analyzing the experimental data, the wavelet transform was used to lower the noise and obtain the optimum parameters. On the basis of the above work, artificial neural network based error back propagation was adopted to identify spectral line of the copper and stainless steel sample successfully. All the results illustrate that the utilization of multiple data processing method for spectral signal processing in LIBS technique can improve the quality of line's analysis and recognition.