计算机与数字工程
計算機與數字工程
계산궤여수자공정
COMPUTER & DIGITAL ENGINEERING
2014年
11期
2037-2040
,共4页
张乔斌%张春辉%朱爱芳
張喬斌%張春輝%硃愛芳
장교빈%장춘휘%주애방
神经网络%光谱分析%柴油机%磨损元素
神經網絡%光譜分析%柴油機%磨損元素
신경망락%광보분석%시유궤%마손원소
neural network%atomic emission spectrum%diesel engine%wear elements
油料原子发射光谱仪是目前国内外广泛应用的油液分析技术之一。为了深入挖掘某型柴油机润滑油中磨损元素的浓度与柴油机负荷、气缸间隙和运行时间之间的对应关系,应用神经网络建立了某型六缸柴油机主要磨损元素 Fe的浓度仿真模型和预测模型。柴油机设置了7种工况,测量了69个油样。仿真模型中,69个油样仿真值的相对误差均小于15%;预测模型中,19个油样预测值的绝对误差均小于光谱仪精确度值,且84%的油样预测值的相对误差小于15%。预测结果表明:神经网络算法能较好地预测Fe元素浓度。
油料原子髮射光譜儀是目前國內外廣汎應用的油液分析技術之一。為瞭深入挖掘某型柴油機潤滑油中磨損元素的濃度與柴油機負荷、氣缸間隙和運行時間之間的對應關繫,應用神經網絡建立瞭某型六缸柴油機主要磨損元素 Fe的濃度倣真模型和預測模型。柴油機設置瞭7種工況,測量瞭69箇油樣。倣真模型中,69箇油樣倣真值的相對誤差均小于15%;預測模型中,19箇油樣預測值的絕對誤差均小于光譜儀精確度值,且84%的油樣預測值的相對誤差小于15%。預測結果錶明:神經網絡算法能較好地預測Fe元素濃度。
유료원자발사광보의시목전국내외엄범응용적유액분석기술지일。위료심입알굴모형시유궤윤활유중마손원소적농도여시유궤부하、기항간극화운행시간지간적대응관계,응용신경망락건립료모형륙항시유궤주요마손원소 Fe적농도방진모형화예측모형。시유궤설치료7충공황,측량료69개유양。방진모형중,69개유양방진치적상대오차균소우15%;예측모형중,19개유양예측치적절대오차균소우광보의정학도치,차84%적유양예측치적상대오차소우15%。예측결과표명:신경망락산법능교호지예측Fe원소농도。
Atomic emission spectroscopy is one of the most widely used techniques for oil analysis in the world now .In order to deeply mine the relation between the concentration of wearing elements of diesel engine and its loads ,cylinders'clearances and runtime after renewing oil ,a simulation model and a prediction model of Fe concentration of a type of six cyl‐inder diesel engine are established by applying neural network .The engine set up seven different working conditions and measured concentration of sixty‐nine oil samples .The results show that the relative errors of the simulation value of the 69 samples are within less than 15% .The absolute errors of prediction value of the 19 samples are lower than the acceptable ac‐curacy indices and the relative errors of 84% samples are within 15% .It is proved that Fe concentration can be predicted ef‐fectively by Neural Network algorithm .