原子与分子物理学报
原子與分子物理學報
원자여분자물이학보
CHINESE JOURNAL OF ATOMIC AND MOLECULAR PHYSICS
2014年
6期
923-927
,共5页
仲崇玉%王淑英%刘静%王倩%朱永乐%阿布都艾尼·由力瓦斯%戴康%沈异凡
仲崇玉%王淑英%劉靜%王倩%硃永樂%阿佈都艾尼·由力瓦斯%戴康%瀋異凡
중숭옥%왕숙영%류정%왕천%주영악%아포도애니·유력와사%대강%침이범
转动-振动能量转移%受激拉曼泵浦%CARS%多普勒线型%瞬时吸收
轉動-振動能量轉移%受激拉曼泵浦%CARS%多普勒線型%瞬時吸收
전동-진동능량전이%수격랍만빙포%CARS%다보륵선형%순시흡수
R-V energy transfer%Stimulated Raman pumping%CARS spectroscopy%Doppler line shape%Tran-sient absorption
利用受激拉曼泵浦将H2激发到v=1, J=3态,研究了H2(1,3)态与Cs2分子碰撞(1,3)态的弛豫及Cs2(X1∑g+)振动态的激发过程.利用相干反斯托克斯拉曼散射(CARS)检测H2的振转态分布,由CARS峰值得到密度比[H2(1,3)]/[H2(0,3)]和[H2(1,1)]/[H2(1,3)],由H2(ν=0)振转态的Boltzmann分布确定H2(0,3)的密度,由此得到[H2(1,3)]和[H2(1,1)]态的密度.激光诱导荧光光谱(LIF)确定被碰撞激发的Cs2(X1∑g+,ν″=11-15)各态.利用单模半导体激光作瞬时光吸收,对于ν″=11,12,13,14和15,积分吸收系数(单位:106 cm-1 s-1)分别是6.5,7.9,7.0,6.1和4.7,结合H2(1,3)的密度,得到H2(1,3-Cs2(X1∑g+,ν″)的转移速率系数,对于ν″=11-15,分别是(单位:10-13 cm3 s-1)1.4±0.6,1.7±0.7,1.5±0.6,1.3±0.5和1.0±0.4.利用吸收线Doppler增宽测量分别得到了Cs2(X1∑g+,ν″=11-15)的平动能。
利用受激拉曼泵浦將H2激髮到v=1, J=3態,研究瞭H2(1,3)態與Cs2分子踫撞(1,3)態的弛豫及Cs2(X1∑g+)振動態的激髮過程.利用相榦反斯託剋斯拉曼散射(CARS)檢測H2的振轉態分佈,由CARS峰值得到密度比[H2(1,3)]/[H2(0,3)]和[H2(1,1)]/[H2(1,3)],由H2(ν=0)振轉態的Boltzmann分佈確定H2(0,3)的密度,由此得到[H2(1,3)]和[H2(1,1)]態的密度.激光誘導熒光光譜(LIF)確定被踫撞激髮的Cs2(X1∑g+,ν″=11-15)各態.利用單模半導體激光作瞬時光吸收,對于ν″=11,12,13,14和15,積分吸收繫數(單位:106 cm-1 s-1)分彆是6.5,7.9,7.0,6.1和4.7,結閤H2(1,3)的密度,得到H2(1,3-Cs2(X1∑g+,ν″)的轉移速率繫數,對于ν″=11-15,分彆是(單位:10-13 cm3 s-1)1.4±0.6,1.7±0.7,1.5±0.6,1.3±0.5和1.0±0.4.利用吸收線Doppler增寬測量分彆得到瞭Cs2(X1∑g+,ν″=11-15)的平動能。
이용수격랍만빙포장H2격발도v=1, J=3태,연구료H2(1,3)태여Cs2분자팽당(1,3)태적이예급Cs2(X1∑g+)진동태적격발과정.이용상간반사탁극사랍만산사(CARS)검측H2적진전태분포,유CARS봉치득도밀도비[H2(1,3)]/[H2(0,3)]화[H2(1,1)]/[H2(1,3)],유H2(ν=0)진전태적Boltzmann분포학정H2(0,3)적밀도,유차득도[H2(1,3)]화[H2(1,1)]태적밀도.격광유도형광광보(LIF)학정피팽당격발적Cs2(X1∑g+,ν″=11-15)각태.이용단모반도체격광작순시광흡수,대우ν″=11,12,13,14화15,적분흡수계수(단위:106 cm-1 s-1)분별시6.5,7.9,7.0,6.1화4.7,결합H2(1,3)적밀도,득도H2(1,3-Cs2(X1∑g+,ν″)적전이속솔계수,대우ν″=11-15,분별시(단위:10-13 cm3 s-1)1.4±0.6,1.7±0.7,1.5±0.6,1.3±0.5화1.0±0.4.이용흡수선Doppler증관측량분별득도료Cs2(X1∑g+,ν″=11-15)적평동능。
The relaxation of H2 (1, 3) by collision with Cs2 molecules has been investigated at T=490K.Parti-cular focus is placed on understanding both the dynamical features and the kinetics of collision which are accom-panied by energy transfer into the Cs2 vibrational and translational degrees of freedom, H2 (1, 3) was prepared by stimulated Raman pumping.We have used the CARS ( Coherent anti -stokes Raman Scattering ) spectral technique to probe the internal state distribution of H2 molecules.From CARS spectral peaks population rations [H2(1, 3)] /[H2(0, 3)], [H2(1, 1)] /[H2(1, 3)] are obtained.From rotational Boltzmann distribu-tion ofν=0, these ratios indicate that [H2(1, 3)]=7.8 ×1015cm-3and [H2(1, 1)] =2.2 ×1015cm-3.LIF ( Laser induce fluoresc ence) has been used to detect collisionally excited Cs2 ( X1∑g+,ν″).The densities of the Cs2 ( X1∑g+, ν″) were obtained by monitoring the transient absorption of the single-mode diode laser beam, turned to the B X transitions.Combining with density of the H2(1, 3), the rate coefficients for H2(1, 3)-Cs2 ( X1∑g+,ν″) processes have been determined.Forν″=11, 12, 13, 14 and 15, they are (1.4 ±0.6) ×10 -13 cm3 s-1 , (1.7 ±0.7) ×10 -13 cm3 s-1 , (1.5 ±0.6) ×10 -13 cm3 s-1 , (1.3 ±0.5) ×10 -13 cm3 s -1 and (1.0 ±0.4) ×10 -13 cm3 s-1 respectively.Doppler spectroscopy was used to measure the distribution of Cs2 recoil velocitiesfor individual vibrational levels of the X1Σ+ g state.