功能材料
功能材料
공능재료
JOURNAL OF FUNCTIONAL MATERIALS
2012年
9期
1155-1159
,共5页
蓝志强%郑会元%闫文宁%韦文楼%郭进
藍誌彊%鄭會元%閆文寧%韋文樓%郭進
람지강%정회원%염문저%위문루%곽진
机械合金化%贮氢合金%bcc结构
機械閤金化%貯氫閤金%bcc結構
궤계합금화%저경합금%bcc결구
mechanical alloying%hydrogen storage alloy%bcc structure
采用机械合金化制备Mg70-xTi12+xNi12Mn6(x=8、16、24、32)合金,通过X射线衍射(XRD)、差热分析(DTA)、扫描电子显微镜(SEM)和压强-成分-温度(PCT)分析等方法对合金粉末进行分析和表征。结果表明,随着球磨时间的增加,合金中hcp相所对应的衍射峰减弱,衍射峰宽化,合金中固溶度以及合金化程度提高;当球磨时间为200h时,在合金Mg46Ti36Ni12Mn6和Mg38Ti44Ni12Mn6中出现具有bcc结构的固溶体,Mg70-xTi12+xNi12Mn6(x=8、16、24、32)合金的吸氢量分别为0.83%、0.68%、1.36%和0.41%(质量分数),根据DTA测试结果,Mg70-xTi12+xNi12Mn6(x=8、16、24、32)合金氢化物的第一个吸热峰位置分别为670、688、593和662K。在Mg46Ti36Ni12Mn6合金中添加5%(质量分数)的TiF3和Nb2O5混合球磨后,合金的吸氢量分别增加到了2.33%和2.36%(质量分数),TiF3和Nb2O5能有效地提高Mg-Ti基合金的贮氢性能。
採用機械閤金化製備Mg70-xTi12+xNi12Mn6(x=8、16、24、32)閤金,通過X射線衍射(XRD)、差熱分析(DTA)、掃描電子顯微鏡(SEM)和壓彊-成分-溫度(PCT)分析等方法對閤金粉末進行分析和錶徵。結果錶明,隨著毬磨時間的增加,閤金中hcp相所對應的衍射峰減弱,衍射峰寬化,閤金中固溶度以及閤金化程度提高;噹毬磨時間為200h時,在閤金Mg46Ti36Ni12Mn6和Mg38Ti44Ni12Mn6中齣現具有bcc結構的固溶體,Mg70-xTi12+xNi12Mn6(x=8、16、24、32)閤金的吸氫量分彆為0.83%、0.68%、1.36%和0.41%(質量分數),根據DTA測試結果,Mg70-xTi12+xNi12Mn6(x=8、16、24、32)閤金氫化物的第一箇吸熱峰位置分彆為670、688、593和662K。在Mg46Ti36Ni12Mn6閤金中添加5%(質量分數)的TiF3和Nb2O5混閤毬磨後,閤金的吸氫量分彆增加到瞭2.33%和2.36%(質量分數),TiF3和Nb2O5能有效地提高Mg-Ti基閤金的貯氫性能。
채용궤계합금화제비Mg70-xTi12+xNi12Mn6(x=8、16、24、32)합금,통과X사선연사(XRD)、차열분석(DTA)、소묘전자현미경(SEM)화압강-성분-온도(PCT)분석등방법대합금분말진행분석화표정。결과표명,수착구마시간적증가,합금중hcp상소대응적연사봉감약,연사봉관화,합금중고용도이급합금화정도제고;당구마시간위200h시,재합금Mg46Ti36Ni12Mn6화Mg38Ti44Ni12Mn6중출현구유bcc결구적고용체,Mg70-xTi12+xNi12Mn6(x=8、16、24、32)합금적흡경량분별위0.83%、0.68%、1.36%화0.41%(질량분수),근거DTA측시결과,Mg70-xTi12+xNi12Mn6(x=8、16、24、32)합금경화물적제일개흡열봉위치분별위670、688、593화662K。재Mg46Ti36Ni12Mn6합금중첨가5%(질량분수)적TiF3화Nb2O5혼합구마후,합금적흡경량분별증가도료2.33%화2.36%(질량분수),TiF3화Nb2O5능유효지제고Mg-Ti기합금적저경성능。
The Mg70 -xTi12+xNi12Mn6 (x=8, 16, 24, 32) alloys were prepared by mechamcal alloying, tne structure and property were investigated by X-ray diffraction (XRD), differential thermal analysis (DTA), pressurecomposition isotherm (PCT) and scanning electron microscope (SEM) measurements. The diffraction peaks of hcp structure were weaken and broaden, the solid solubility and the degree of amorphous increased with milling time. The bcc structure appeared in Mg46Ti36Ni12Mn6 and Mg38Ti44Ni12Mn6 alloy when milled 200h. The hydrogen storage capacity of Mg70-xTi12+xNi12Mn6 (x=8, 16, 24, 32) alloys was 0. 83%,0.68%/4,1.36% and 0.41 wt%, respectively. DTA results showed that the first endothermic peak of the alloys appeared at 670, 688, 593 and 662K. In order to improve the hydrogen storage property of the Mg46 Ti36 Nin Mn6 alloy TiFa and Nb208 were chosen as additive. For example, after the Mg46 Ti36 Ni12 Mn6 as-mixed (without milling) powder + 5wt % M (M = TiF3, Nb2O5 ) were milled 200h, the hydrogen storage capacity of Mg46 Ti36 Niie Mn6 + 5wt %o M ( M = TiF3, Nb2 O5) alloy reached 2.33wt% and 2.36wt%, respectively. TiF3 and Nb2O5 as additive could significantly improve the hydrogen storage capacity of Mg-Ti alloy.