功能材料
功能材料
공능재료
JOURNAL OF FUNCTIONAL MATERIALS
2012年
17期
2304-2307,2311
,共5页
卢江雷%王广龙%孙连峰%高凤岐%余芳%王钢%王红培
盧江雷%王廣龍%孫連峰%高鳳岐%餘芳%王鋼%王紅培
로강뢰%왕엄룡%손련봉%고봉기%여방%왕강%왕홍배
碳纳米管薄膜%热电发电机%热电耦合%有限元%热气流
碳納米管薄膜%熱電髮電機%熱電耦閤%有限元%熱氣流
탄납미관박막%열전발전궤%열전우합%유한원%열기류
carbon nanotube membrane%thermoelectric generator%thermoelectric coupling%finite element%thermalgas
为解决微小型器件电源体积大、质量重、集成难等问题,利用碳纳米管薄膜材料的热电特性,设计了一种新型的薄膜式热电发电机,可将热气流直接转化为电能。建立了薄膜热电发电机物理模型,研究了热电发电理论和控制方程,对碳纳米管薄膜热电发电单元进行有限元仿真,分析了输出电压和输出功率的变化规律。提出了减小内阻的方法,为改进碳纳米管薄膜热电发电实验模型提供理论依据。利用浮动催化化学气相沉积法制备了导电性较好的透明碳纳米管薄膜,其热电特性与仿真结果一致。碳纳米管薄膜柔韧性较好,将多个发电单元串联连接,构建圆柱体、截顶圆锥体等多种薄膜式热电发电机结构,易与微光机电系统集成,具有广阔的应用前景和实用价值。
為解決微小型器件電源體積大、質量重、集成難等問題,利用碳納米管薄膜材料的熱電特性,設計瞭一種新型的薄膜式熱電髮電機,可將熱氣流直接轉化為電能。建立瞭薄膜熱電髮電機物理模型,研究瞭熱電髮電理論和控製方程,對碳納米管薄膜熱電髮電單元進行有限元倣真,分析瞭輸齣電壓和輸齣功率的變化規律。提齣瞭減小內阻的方法,為改進碳納米管薄膜熱電髮電實驗模型提供理論依據。利用浮動催化化學氣相沉積法製備瞭導電性較好的透明碳納米管薄膜,其熱電特性與倣真結果一緻。碳納米管薄膜柔韌性較好,將多箇髮電單元串聯連接,構建圓柱體、截頂圓錐體等多種薄膜式熱電髮電機結構,易與微光機電繫統集成,具有廣闊的應用前景和實用價值。
위해결미소형기건전원체적대、질량중、집성난등문제,이용탄납미관박막재료적열전특성,설계료일충신형적박막식열전발전궤,가장열기류직접전화위전능。건립료박막열전발전궤물리모형,연구료열전발전이론화공제방정,대탄납미관박막열전발전단원진행유한원방진,분석료수출전압화수출공솔적변화규률。제출료감소내조적방법,위개진탄납미관박막열전발전실험모형제공이론의거。이용부동최화화학기상침적법제비료도전성교호적투명탄납미관박막,기열전특성여방진결과일치。탄납미관박막유인성교호,장다개발전단원천련련접,구건원주체、절정원추체등다충박막식열전발전궤결구,역여미광궤전계통집성,구유엄활적응용전경화실용개치。
In order to solve the power problems of miniature devices such as great volume, heavy weight and dif- ficult integration, the novel membrane thermoelectric generator ( TEG ) was designed by utilizing the thermoe- lectric properties of carbon nanotube ( CNT ) membrane. It could directly convert the thermal gas flow to the electric energy. The physical model of the membrane TEG was constructed. The thermoelectric theory and governing equations were researched. The CNT membrane thermoelectric cell was simulated by the finite ele- ment method, and the change trend of output power and voltage were analyzed. The methods of reducing the internal resistance were put forward, which could provide the theoretical foundation for optimizing the experi- mental model. The highly conducting, transparent CNT membrane was synthesized by the floating-catalytic chemical vapor deposition. The thermoelectric properties were consistent to the simulation results. The CNT membrane had fine pliability, so the cylinder or truncated cone structure of membrane TEG could be construc- ted by connecting many cells in series. It was easily integrated with micro-optical electromechanical systems, and had wide applied prospect and practical value.