功能材料
功能材料
공능재료
JOURNAL OF FUNCTIONAL MATERIALS
2012年
15期
1985-1988
,共4页
形貌%磁性粒子%传动性能%正八面体
形貌%磁性粒子%傳動性能%正八麵體
형모%자성입자%전동성능%정팔면체
morphology%magnetic particle%transmission property%octahedron
选用无规则、正八面体和六方片状形貌的纳米Fe3O4磁性颗粒制备的磁流体,通过设计、组装磁流体传动性能测试仪,探讨了磁流体传动性能与传动盘间距、传动盘之间的转速差的关系,并研究了磁流体中纳米磁性颗粒的形貌对磁流体传动性能的影响。结果表明,在传动盘间隙一定时,磁流体传递扭矩的大小在磁性粒子未达到其饱和磁化强度时,传递扭矩大小随感应磁场强度增大而迅速增大,但随着磁感应强度的进一步加大,磁性粒子逐步达到其饱和磁化强度,磁流体传递扭矩大小的增长减缓,最后几乎不再增大;传动盘之间的间隙对磁流体传递扭矩的大小影响很大,间隙越大,传递的扭矩越小;传动盘之间的转速差对磁流体传递扭矩的大小影响较小,在低转速差下传递的扭矩随转速差的增加而有所增加,但超过一定的转速差后,由于磁流体的剪切稀化效应,传递的扭矩将有所减小。另外,磁流体中磁性粒子的形貌对磁流体传递扭矩的大小有一定的影响,正八面体形貌的磁性粒子相对于无规则和六方片状形貌的磁性粒子,其磁流体能够传递更大的扭矩。
選用無規則、正八麵體和六方片狀形貌的納米Fe3O4磁性顆粒製備的磁流體,通過設計、組裝磁流體傳動性能測試儀,探討瞭磁流體傳動性能與傳動盤間距、傳動盤之間的轉速差的關繫,併研究瞭磁流體中納米磁性顆粒的形貌對磁流體傳動性能的影響。結果錶明,在傳動盤間隙一定時,磁流體傳遞扭矩的大小在磁性粒子未達到其飽和磁化彊度時,傳遞扭矩大小隨感應磁場彊度增大而迅速增大,但隨著磁感應彊度的進一步加大,磁性粒子逐步達到其飽和磁化彊度,磁流體傳遞扭矩大小的增長減緩,最後幾乎不再增大;傳動盤之間的間隙對磁流體傳遞扭矩的大小影響很大,間隙越大,傳遞的扭矩越小;傳動盤之間的轉速差對磁流體傳遞扭矩的大小影響較小,在低轉速差下傳遞的扭矩隨轉速差的增加而有所增加,但超過一定的轉速差後,由于磁流體的剪切稀化效應,傳遞的扭矩將有所減小。另外,磁流體中磁性粒子的形貌對磁流體傳遞扭矩的大小有一定的影響,正八麵體形貌的磁性粒子相對于無規則和六方片狀形貌的磁性粒子,其磁流體能夠傳遞更大的扭矩。
선용무규칙、정팔면체화륙방편상형모적납미Fe3O4자성과립제비적자류체,통과설계、조장자류체전동성능측시의,탐토료자류체전동성능여전동반간거、전동반지간적전속차적관계,병연구료자류체중납미자성과립적형모대자류체전동성능적영향。결과표명,재전동반간극일정시,자류체전체뉴구적대소재자성입자미체도기포화자화강도시,전체뉴구대소수감응자장강도증대이신속증대,단수착자감응강도적진일보가대,자성입자축보체도기포화자화강도,자류체전체뉴구대소적증장감완,최후궤호불재증대;전동반지간적간극대자류체전체뉴구적대소영향흔대,간극월대,전체적뉴구월소;전동반지간적전속차대자류체전체뉴구적대소영향교소,재저전속차하전체적뉴구수전속차적증가이유소증가,단초과일정적전속차후,유우자류체적전절희화효응,전체적뉴구장유소감소。령외,자류체중자성입자적형모대자류체전체뉴구적대소유일정적영향,정팔면체형모적자성입자상대우무규칙화륙방편상형모적자성입자,기자류체능구전체경대적뉴구。
This paper selected nanoparticles of Fe304 with irregular, octahedron and sixparty flake morpholo gies as solid phase material used in magnetic fluids. A test device for the magnetic fluid transmission was de signed. The relationships among the transmission torque and the disk space, rotation difference and particle morphology of the as prepared magnetic fluids were investigated. The results showed that the transfer torque was correlated to the magnetic induction in a certain gap between the drive plates when the magnetization of magnetic particles does not reach a saturation value. The transmission torque increased with increasing the mag netic induction. However, the magnetic particles gradually reached the saturation magnetization when the mag netic induction was further increased, leading to a constant transmission torque. The gap between the drive disks had an impact on the transmission torque. A greater gap could give a smaller transmission torque. The ro tation difference between the transmission disks had a slight effect on the transmission torque at a lower rota tion. The transmission torque increased with increasing the rotation difference. However, the transferred torque would decrease when the rotation difference exceeded a certain limit due to the shearthinning effect of the magnetic fluid. The morphology of the magnetic particles in the magnetic fluid could affect the transfer torque. The nanoparticles of Fe3 04 with octahedral morphology could transfer a greater torque rather than the nanoparticles with irregular or sixparty flakelike morphologies.