上海大学学报(自然科学版)
上海大學學報(自然科學版)
상해대학학보(자연과학판)
JOURNAL OF SHANGHAI UNIVERSITY (NATURAL SCIENCE EDITION)
2014年
5期
596-604
,共9页
桥梁施工及运营%岩体边坡%稳定性%强度折减法
橋樑施工及運營%巖體邊坡%穩定性%彊度摺減法
교량시공급운영%암체변파%은정성%강도절감법
bridge construction and operation%rock slope%stability%strength reduction method
使用强度折减法、Mohr-Coulomb破坏准则和有限元分析方法,对岩体边坡在群桩施工前后、桥墩和桥梁施工时及运营荷载作用下的稳定性进行了数值模拟.模拟时,根据现有规范计算列车运营对桥墩顶部的竖向活载和制动力,并根据岩土层分布建立了桥墩所在岩体边坡的3维几何模型,研究了桥梁工程施工及运营的不同工况对岩体边坡稳定性的影响.研究结果表明,群桩施工前后边坡稳定性安全系数分别为1.35和1.63;桥墩高度为6.0,12.0,18.0,22.5 m时边坡稳定性安全系数分别为1.61,1.60,1.58,1.57;桥梁施工结束时及列车荷载作用下的边坡稳定性安全系数分别为1.55和1.53;随着桥墩和桥梁施工荷载的增加,岩体边坡中塑性区Mises等效应力逐渐增大,边坡稳定性逐渐降低.该结果对不同工况下岩体边坡中的桥梁工程设计和施工具有一定的参考价值.
使用彊度摺減法、Mohr-Coulomb破壞準則和有限元分析方法,對巖體邊坡在群樁施工前後、橋墩和橋樑施工時及運營荷載作用下的穩定性進行瞭數值模擬.模擬時,根據現有規範計算列車運營對橋墩頂部的豎嚮活載和製動力,併根據巖土層分佈建立瞭橋墩所在巖體邊坡的3維幾何模型,研究瞭橋樑工程施工及運營的不同工況對巖體邊坡穩定性的影響.研究結果錶明,群樁施工前後邊坡穩定性安全繫數分彆為1.35和1.63;橋墩高度為6.0,12.0,18.0,22.5 m時邊坡穩定性安全繫數分彆為1.61,1.60,1.58,1.57;橋樑施工結束時及列車荷載作用下的邊坡穩定性安全繫數分彆為1.55和1.53;隨著橋墩和橋樑施工荷載的增加,巖體邊坡中塑性區Mises等效應力逐漸增大,邊坡穩定性逐漸降低.該結果對不同工況下巖體邊坡中的橋樑工程設計和施工具有一定的參攷價值.
사용강도절감법、Mohr-Coulomb파배준칙화유한원분석방법,대암체변파재군장시공전후、교돈화교량시공시급운영하재작용하적은정성진행료수치모의.모의시,근거현유규범계산열차운영대교돈정부적수향활재화제동력,병근거암토층분포건립료교돈소재암체변파적3유궤하모형,연구료교량공정시공급운영적불동공황대암체변파은정성적영향.연구결과표명,군장시공전후변파은정성안전계수분별위1.35화1.63;교돈고도위6.0,12.0,18.0,22.5 m시변파은정성안전계수분별위1.61,1.60,1.58,1.57;교량시공결속시급열차하재작용하적변파은정성안전계수분별위1.55화1.53;수착교돈화교량시공하재적증가,암체변파중소성구Mises등효응력축점증대,변파은정성축점강저.해결과대불동공황하암체변파중적교량공정설계화시공구유일정적삼고개치.
Stability of a cutting slope at various stages, including those before and after the pile group construction, during the bridge construction, and under the train operation, were simulated using a strength reduction method, the Mohr-Coulomb failure criterion, and the finite element analysis technique. The existing specifications were used to simulate the live load and braking force of the pier top under the train operation. A three-dimensional finite element model was then established according to the practical locations of the geo-materials in the cutting slope. The influences of the loads on stability of the slope in bridge construction and operations were investigated. The study shows that the stability factors of the slope were 1.35 and 1.63 before and after the pile group constructions, respectively. The stability factors were 1.61, 1.60, 1.58, and 1.57 as the height of pier were 6.0, 12.0, 18.0, 22.5 m, respectively. In completion of the bridge construction and under the train operation, the safety factors decreased to 1.55 and 1.53, respectively. During the entire construction, the safety factors were decreased obviously. Nevertheless, the Mises stresses in the plastic zone increased as these safety factors decreased. The results presented herein may be used as references in the design and construction of bridges in a rock slope under various surrounding conditions.