电脑知识与技术
電腦知識與技術
전뇌지식여기술
COMPUTER KNOWLEDGE AND TECHNOLOGY
2014年
32期
7769-7771
,共3页
马尔可夫链%蒙特卡罗方法%MCMC方法%多孔介质流体预测%孔隙度%渗透率
馬爾可伕鏈%矇特卡囉方法%MCMC方法%多孔介質流體預測%孔隙度%滲透率
마이가부련%몽특잡라방법%MCMC방법%다공개질류체예측%공극도%삼투솔
Markov Chain%Monte Carlo method%Flow Prediction in Porous media
孔隙度和渗透率作为油气储层的重要参数,对石油产量的预测有至关重要的作用。在多孔介质流体流动过程中,孔隙度和渗透率的概率密度分布函数结构复杂,难以用经典分布予以描述,该文介绍了应用马尔可夫链蒙特卡罗方法(Mar?kov chain Monte Carlo method)对孔隙度和渗透率进行贝叶斯估计,然后在其后验概率分布中采样,得到部分已知流量数据并计算流量的似然分布,最终得到生产曲线并用该方法成功预测了生产曲线的走势。同时在文章的最后,基于现存方法中存在的问题,提出了相关的改进方向。
孔隙度和滲透率作為油氣儲層的重要參數,對石油產量的預測有至關重要的作用。在多孔介質流體流動過程中,孔隙度和滲透率的概率密度分佈函數結構複雜,難以用經典分佈予以描述,該文介紹瞭應用馬爾可伕鏈矇特卡囉方法(Mar?kov chain Monte Carlo method)對孔隙度和滲透率進行貝葉斯估計,然後在其後驗概率分佈中採樣,得到部分已知流量數據併計算流量的似然分佈,最終得到生產麯線併用該方法成功預測瞭生產麯線的走勢。同時在文章的最後,基于現存方法中存在的問題,提齣瞭相關的改進方嚮。
공극도화삼투솔작위유기저층적중요삼수,대석유산량적예측유지관중요적작용。재다공개질류체류동과정중,공극도화삼투솔적개솔밀도분포함수결구복잡,난이용경전분포여이묘술,해문개소료응용마이가부련몽특잡라방법(Mar?kov chain Monte Carlo method)대공극도화삼투솔진행패협사고계,연후재기후험개솔분포중채양,득도부분이지류량수거병계산류량적사연분포,최종득도생산곡선병용해방법성공예측료생산곡선적주세。동시재문장적최후,기우현존방법중존재적문제,제출료상관적개진방향。
Permeability and porosity, which significantly describing of subsurface properties, are essential factors for the predicting gas production. But given the fact that in porous media flow process, the probability density functions for permeability and porosi?ty are usually too complex for direct sampling, using classical statistical ways to describe the process is troublesome. This article in?troduced a relative Markov chain Monte Carlo method to solve this kind of problems. In this article, we demonstrated the pro?cess consisting Bayes estimation of permeability and porosity, sampling from their posterior distribution, finding the likelihood of the flows and prediction for the production given limited training data. Also, at the end of this article also listed the problems ex?isting in current methods and provided several potential ways for improving.