中华地方病学杂志
中華地方病學雜誌
중화지방병학잡지
Chinese Journal of Endemiology
2014年
1期
30-33
,共4页
刘宇岩%李永芳%王达%杨博逸%范淑君%郅雪原%郑全美%孙贵范
劉宇巖%李永芳%王達%楊博逸%範淑君%郅雪原%鄭全美%孫貴範
류우암%리영방%왕체%양박일%범숙군%질설원%정전미%손귀범
淮河流域%地下水%砷%地理信息系统%预测模型
淮河流域%地下水%砷%地理信息繫統%預測模型
회하류역%지하수%신%지리신식계통%예측모형
Huaihe river basin%Groundwater%Arsenic%Geographic information system%Predictive model
目的 分析淮河流域山东、河南、安徽、江苏四省地下水水砷分布,探讨地理信息系统(GIS)预测模型结果的准确度.方法 以淮河流域四省地下水水砷含量调查结果为分析源数据,按水砷含量进行分层,以水砷> 0.01 mg/L为统计标准,计算超标自然村数及各县(区)的超标率.同时,在GIS预测模型地图中标记所有抽样县(区)的位置,以砷污染概率0.3灰度值为标准,将GIS预测模型与该省份地下水水砷实际检测分布情况进行拟合分析,计算GIS预测模型的准确度.结果 在淮河流域的四省共抽取61 824口井,分布于2 781个自然村中,确认高砷污染村(水砷> 0.01 mg/L)有474个,平均检出率为17.04%(474/2 781).其中山东、河南、安徽、江苏省高砷村检出率分别为13.19%(79/599)、23.82% (101/424)、74.25%(199/268)和6.38%(95/1 490),各省间的检出率比较差异有统计学意义(x2=820.84,P<0.05).以县(区)为单位,在四省103个县(区)中,由GIS预测模型所预测的概率>0.3的高砷县有72个,占总数的69.90%(72/103),其中山东、河南、安徽、江苏省分别为67.86%(19/28)、61.36%(27/44)、85.71%(12/14)和82.35%(14/17).在103个县(区)中,实际抽样检出超标的县(区)有62个,其中经GIS模型预测地下水高砷概率>03的有42个,灵敏度为67.74%(42/62);实际抽样检出未超标县(区)有41个,其中经GIS模型预测地下水高砷概率<0.3的有11个,特异度为26.83%(11/41).山东、河南、安徽、江苏省GIS模型预测结果灵敏度分别为57.89%(11/19)、59.09%(13/22)、84.62%(11/13)和87.50%(7/8).结论 水砷抽样调查实际结果与GIS模型预测结果拟合度较好,GIS模型对地区地下水高砷污染预测有较高的准确度.
目的 分析淮河流域山東、河南、安徽、江囌四省地下水水砷分佈,探討地理信息繫統(GIS)預測模型結果的準確度.方法 以淮河流域四省地下水水砷含量調查結果為分析源數據,按水砷含量進行分層,以水砷> 0.01 mg/L為統計標準,計算超標自然村數及各縣(區)的超標率.同時,在GIS預測模型地圖中標記所有抽樣縣(區)的位置,以砷汙染概率0.3灰度值為標準,將GIS預測模型與該省份地下水水砷實際檢測分佈情況進行擬閤分析,計算GIS預測模型的準確度.結果 在淮河流域的四省共抽取61 824口井,分佈于2 781箇自然村中,確認高砷汙染村(水砷> 0.01 mg/L)有474箇,平均檢齣率為17.04%(474/2 781).其中山東、河南、安徽、江囌省高砷村檢齣率分彆為13.19%(79/599)、23.82% (101/424)、74.25%(199/268)和6.38%(95/1 490),各省間的檢齣率比較差異有統計學意義(x2=820.84,P<0.05).以縣(區)為單位,在四省103箇縣(區)中,由GIS預測模型所預測的概率>0.3的高砷縣有72箇,佔總數的69.90%(72/103),其中山東、河南、安徽、江囌省分彆為67.86%(19/28)、61.36%(27/44)、85.71%(12/14)和82.35%(14/17).在103箇縣(區)中,實際抽樣檢齣超標的縣(區)有62箇,其中經GIS模型預測地下水高砷概率>03的有42箇,靈敏度為67.74%(42/62);實際抽樣檢齣未超標縣(區)有41箇,其中經GIS模型預測地下水高砷概率<0.3的有11箇,特異度為26.83%(11/41).山東、河南、安徽、江囌省GIS模型預測結果靈敏度分彆為57.89%(11/19)、59.09%(13/22)、84.62%(11/13)和87.50%(7/8).結論 水砷抽樣調查實際結果與GIS模型預測結果擬閤度較好,GIS模型對地區地下水高砷汙染預測有較高的準確度.
목적 분석회하류역산동、하남、안휘、강소사성지하수수신분포,탐토지리신식계통(GIS)예측모형결과적준학도.방법 이회하류역사성지하수수신함량조사결과위분석원수거,안수신함량진행분층,이수신> 0.01 mg/L위통계표준,계산초표자연촌수급각현(구)적초표솔.동시,재GIS예측모형지도중표기소유추양현(구)적위치,이신오염개솔0.3회도치위표준,장GIS예측모형여해성빈지하수수신실제검측분포정황진행의합분석,계산GIS예측모형적준학도.결과 재회하류역적사성공추취61 824구정,분포우2 781개자연촌중,학인고신오염촌(수신> 0.01 mg/L)유474개,평균검출솔위17.04%(474/2 781).기중산동、하남、안휘、강소성고신촌검출솔분별위13.19%(79/599)、23.82% (101/424)、74.25%(199/268)화6.38%(95/1 490),각성간적검출솔비교차이유통계학의의(x2=820.84,P<0.05).이현(구)위단위,재사성103개현(구)중,유GIS예측모형소예측적개솔>0.3적고신현유72개,점총수적69.90%(72/103),기중산동、하남、안휘、강소성분별위67.86%(19/28)、61.36%(27/44)、85.71%(12/14)화82.35%(14/17).재103개현(구)중,실제추양검출초표적현(구)유62개,기중경GIS모형예측지하수고신개솔>03적유42개,령민도위67.74%(42/62);실제추양검출미초표현(구)유41개,기중경GIS모형예측지하수고신개솔<0.3적유11개,특이도위26.83%(11/41).산동、하남、안휘、강소성GIS모형예측결과령민도분별위57.89%(11/19)、59.09%(13/22)、84.62%(11/13)화87.50%(7/8).결론 수신추양조사실제결과여GIS모형예측결과의합도교호,GIS모형대지구지하수고신오염예측유교고적준학도.
Objective To test the accuracy of predicted results by a geographic information system(GIS) model with the actual distribution of groundwater arsenic concentration in four provinces including Shandong,Henan,Anhui and Jiangsu of Huaihe River Basin.Methods The results of groundwater arsenic level of the four provinces in Huaihe River Basin were cited as the data resource; after stratified by arsenic in water,water arsenic > 0.01 mg/L as statistical standards,the number of villages and counties(districts) with arsenic level higher than the standards was calculated.Meanwhile,locations of counties(districts) sampled on the map of GIS predictive model were marked; the gray level of arsenic contaminated probability 0.3 was regarded as the criterion and the consistence of both results predicted by GIS model and detected actually in each province was analyzed.Results A total of 61 824 wells distributed in 2 781 villages around the four provinces of Huaihe River Basin were sampled,and 474 of the 2 781 villages were confirmed as high arsenic villages(arsenic > 0.01 mg/L),with an average detection rate of 17.04%(474/2 781).The detection rates of high arsenic villages in Shandong,Henan,Anhui and Jiangsu were 13.19% (79/599),23.82% (101/424),74.25% (199/268) and 6.38% (95/1 490),respectively,and the differences of detection rates among the provinces were statistically significant(x2 =820.84,P < 0.05).County(district) as a unit,among all the 103 counties(districts),the number of counties where the probability of high arsenic concentration in groundwater predicted by GIS model that greater than 0.3 was 72,accounting for 69.90%(72/103) of total counties,in which Shandong,Henan,Anhui and Jiangsu were 67.86%(19/28),61.36% (27/44),85.71% (12/14) and 82.35% (14/17),respectively.Among all 103 counties (districts),the number of counties(districts) where the detection rates of high arsenic villages beyond the standards was 62,and among these 62 counties,there were 42 counties where the probability of high arsenic concentration in groundwater predicted by GIS model was greater than 0.3,and the overall sensibility was 67.74%(42/62); among all the 41 counties where the detection rates of high arsenic villages were not beyond the standards,11 counties where the probability of high arsenic concentration in groundwater predicted by GIS model was lower than 0.3,and the overall specificity was 26.83%(11/41); the sensitivities of GIS model in Shandong,Henan,Anhui and Jiangsu were 57.89% (11/19),59.09% (13/22),84.62% (11/13) and 87.50% (7/8),respectively.Conclusion The results of groundwater arsenic investigated in the four provinces of Huaihe River Basin and predicted by GIS model are consistent,and we have proved that the results of GIS predictive model are accurate.