中华创伤杂志
中華創傷雜誌
중화창상잡지
Chinese Journal of Traumatology
2014年
5期
449-454
,共6页
黄进成%刘曦明%蔡贤华%王志华%张继平%雷建银%潘昌武
黃進成%劉晞明%蔡賢華%王誌華%張繼平%雷建銀%潘昌武
황진성%류희명%채현화%왕지화%장계평%뢰건은%반창무
髋臼%骨折固定术,内%有限元分析
髖臼%骨摺固定術,內%有限元分析
관구%골절고정술,내%유한원분석
Acetabulum%Fracture fixation,internal%Finite element analysis
目的 建立累及方形区的髋臼骨折有限元模型,比较3种内固定方式的效果.方法 利用有限元建模软件建立累及方形区的髋臼骨折模型,在Hypermesh V10.0中生成双柱钛板(A组)、前路特殊塑形钛板加方形区螺钉(B组)及前路特殊塑形钛板加方形区螺钉联合后柱螺钉(C组)3种内固定方式,分别对各组坐骨结节及股骨下端进行约束,依次模拟坐位、站位骨盆受力情况.于S1椎体上加载大小为600N的力,模拟坐位、站位时重力方向,测量各固定方式髋臼处的最大应力、最大位移和骨折线上各节点的位移并进行分析. 结果 分别在坐、站位下,在相同加载方式时3组髋臼处的最大应力分别为29.73,19.84,9.47 MPa和13.28,12.18,9.62 MPa,最大位移分别为1.14,1.11,1.08mm和1.13,1.10,1.09 mm:C组<B组<A组.骨折线上节点位移均数比较:C组<B组<A组(P均>0.05). 结论 有限元模型能有效地反映骨盆的应力分布.前路特殊塑形钛板加方形区螺钉联合后柱螺钉内固定治疗累及方形区的髋臼骨折具有良好的生物力学稳定性.
目的 建立纍及方形區的髖臼骨摺有限元模型,比較3種內固定方式的效果.方法 利用有限元建模軟件建立纍及方形區的髖臼骨摺模型,在Hypermesh V10.0中生成雙柱鈦闆(A組)、前路特殊塑形鈦闆加方形區螺釘(B組)及前路特殊塑形鈦闆加方形區螺釘聯閤後柱螺釘(C組)3種內固定方式,分彆對各組坐骨結節及股骨下耑進行約束,依次模擬坐位、站位骨盆受力情況.于S1椎體上加載大小為600N的力,模擬坐位、站位時重力方嚮,測量各固定方式髖臼處的最大應力、最大位移和骨摺線上各節點的位移併進行分析. 結果 分彆在坐、站位下,在相同加載方式時3組髖臼處的最大應力分彆為29.73,19.84,9.47 MPa和13.28,12.18,9.62 MPa,最大位移分彆為1.14,1.11,1.08mm和1.13,1.10,1.09 mm:C組<B組<A組.骨摺線上節點位移均數比較:C組<B組<A組(P均>0.05). 結論 有限元模型能有效地反映骨盆的應力分佈.前路特殊塑形鈦闆加方形區螺釘聯閤後柱螺釘內固定治療纍及方形區的髖臼骨摺具有良好的生物力學穩定性.
목적 건립루급방형구적관구골절유한원모형,비교3충내고정방식적효과.방법 이용유한원건모연건건립루급방형구적관구골절모형,재Hypermesh V10.0중생성쌍주태판(A조)、전로특수소형태판가방형구라정(B조)급전로특수소형태판가방형구라정연합후주라정(C조)3충내고정방식,분별대각조좌골결절급고골하단진행약속,의차모의좌위、참위골분수력정황.우S1추체상가재대소위600N적력,모의좌위、참위시중력방향,측량각고정방식관구처적최대응력、최대위이화골절선상각절점적위이병진행분석. 결과 분별재좌、참위하,재상동가재방식시3조관구처적최대응력분별위29.73,19.84,9.47 MPa화13.28,12.18,9.62 MPa,최대위이분별위1.14,1.11,1.08mm화1.13,1.10,1.09 mm:C조<B조<A조.골절선상절점위이균수비교:C조<B조<A조(P균>0.05). 결론 유한원모형능유효지반영골분적응력분포.전로특수소형태판가방형구라정연합후주라정내고정치료루급방형구적관구골절구유량호적생물역학은정성.
Objective To compared different fixation methods for acetabular fractures involving the quadrilateral plate using a finite element model of the acetabulum.Methods A model of acetabular fractures with quadrilateral plate involved was developed in the finite element software and processed in Hypermesh V10.0 to generate internal fixation with dual-column titanium plate (Group A),anterior special titanium moulding plate plus quadrilateral screws (Group B),and anterior special titanium moulding plate plus quadrilateral screws combined with posterior column screws (Group C).Pelvic stress in sitting and standing positions were simulated in sequence with constraint of tuber nodes and inferior femur.Maximum stress and displacement of the acetabulum and displacement of nodes on fracture lines were measured after a force of 600 N was applied to S1 verterbrae in line with the direction of gravity in sitting and standing positions.Results In sitting position,the maximum stress and displacement of the acetabulum exhibited a sequence of Group C (9.47,1.08) < Group B (19.84,1.11) < Group A (29.73,1.14).Moreover,the same result was found in standing position with Group C (9.62,1.09) < Group B (12.18,1.10) < Group A (13.28,1.13).Mean displacement of nodes on fracture lines ranked in order of Group C < Group B < Group A (P > 0.05).Conclusions The finite element model can reflect the distribution of pelvic stress effectively.Anterior special titanium moulding plate plus quadrilateral screws combined with posterior column screws provide favorable biomechanical stability in treatment of acetabular fractures involving the quadrilateral area.