目的 在模拟不同海拔缺氧暴露及氦氧潜水条件下测定潜水员的相关生理指标,探讨不同海拔潜水及体力负荷对人体心、肺功能的影响.方法 4名潜水员在高、低压两用舱内,连续9d分别暴露于模拟平原(海拔50 m)和海拔3000、4000、5200 m环境中,在平原和3000、4000 m各逗留2d,5200 m逗留3d.分别在3000、4000 m模拟30 m潜水,1次/d;在5200 m的第1天模拟30 m潜水,第2天模拟50 m潜水,第3天无潜水活动;潜水时间均为60 min.每天上午安静环境下,所有被试者静坐10 min后测定心率和每搏输出量.测试结束进行体力负荷运动,被试者静坐在自行车功量计上1 min后测安静状态下的心率、动脉血氧饱和度(Sa02)、呼出气末端C02量;然后进行5 min蹬车实验,负荷0.5 kg,速度为60 r/min,用节拍器控制蹬车节奏,测每分钟末心率、Sa02,连续测5 min;蹬车结束后,被试者静坐在自行车上休息,测每分钟末心率、Sa02、呼出气末端CO2量,连续测3 min.每天下午进行模拟潜水,在潜水停留期间进行心率测试(平原状态不潜水,但进行对比测试).心率变化值=负荷第5分钟心率-恢复第3分钟心率;根据心率,利用Astrand.P.O列线图,推算出人体的最大摄氧量(V02max).结果 (1)在3000、4000 m模拟30 m潜水时的心率,比3000、4000 m暴露安静状态时的心率分别下降了9.6%和6.9%.在5200 m模拟30、50 m潜水时的心率,比5200 m暴露安静状态时的心率分别下降了7.6%和8.0%.各海拔潜水时的心率与在该海拔暴露时安静状态下的心率比均有下降趋势,但差异均无统计学意义(P>0.05).在3000 m时每搏输出量[(68.1±15.8) ml]比50 m安静时[(84.7±22.7)m1]明显下降,差异有统计学意义(P<0.05).(2)安静状态下、体力负荷后、恢复期,从平原到5200 m,各海拔环境下的心率与平原比显著升高,差异均有统计学意义(P <0.05或P<0.01).4000 m与5200 m比较,安静状态下、体力负荷后、恢复期,心率变化差异无统计学意义(P>0.05).(3)随着海拔的升高,安静状态下、体力负荷后,相邻各高海拔之间SaO2持续下降,差异均有统计学意义(P<0.05或P<0.01).(4)3000、4000、5200 m与平原比,VO2max分别下降了6.2%、19.9%、22.3%.(5)安静状态下,5200 m时呼出气末端C02量与平原比显著减少,差异有统计学意义(P<0.01);与平原比,3000、4000、5200 m恢复期第3分钟末呼出气末端C02量显著减少,差异均有统计学意义(P<0.01).结论 高海拔暴露及氦氧潜水后,人体心肺功能有一定的改善.
目的 在模擬不同海拔缺氧暴露及氦氧潛水條件下測定潛水員的相關生理指標,探討不同海拔潛水及體力負荷對人體心、肺功能的影響.方法 4名潛水員在高、低壓兩用艙內,連續9d分彆暴露于模擬平原(海拔50 m)和海拔3000、4000、5200 m環境中,在平原和3000、4000 m各逗留2d,5200 m逗留3d.分彆在3000、4000 m模擬30 m潛水,1次/d;在5200 m的第1天模擬30 m潛水,第2天模擬50 m潛水,第3天無潛水活動;潛水時間均為60 min.每天上午安靜環境下,所有被試者靜坐10 min後測定心率和每搏輸齣量.測試結束進行體力負荷運動,被試者靜坐在自行車功量計上1 min後測安靜狀態下的心率、動脈血氧飽和度(Sa02)、呼齣氣末耑C02量;然後進行5 min蹬車實驗,負荷0.5 kg,速度為60 r/min,用節拍器控製蹬車節奏,測每分鐘末心率、Sa02,連續測5 min;蹬車結束後,被試者靜坐在自行車上休息,測每分鐘末心率、Sa02、呼齣氣末耑CO2量,連續測3 min.每天下午進行模擬潛水,在潛水停留期間進行心率測試(平原狀態不潛水,但進行對比測試).心率變化值=負荷第5分鐘心率-恢複第3分鐘心率;根據心率,利用Astrand.P.O列線圖,推算齣人體的最大攝氧量(V02max).結果 (1)在3000、4000 m模擬30 m潛水時的心率,比3000、4000 m暴露安靜狀態時的心率分彆下降瞭9.6%和6.9%.在5200 m模擬30、50 m潛水時的心率,比5200 m暴露安靜狀態時的心率分彆下降瞭7.6%和8.0%.各海拔潛水時的心率與在該海拔暴露時安靜狀態下的心率比均有下降趨勢,但差異均無統計學意義(P>0.05).在3000 m時每搏輸齣量[(68.1±15.8) ml]比50 m安靜時[(84.7±22.7)m1]明顯下降,差異有統計學意義(P<0.05).(2)安靜狀態下、體力負荷後、恢複期,從平原到5200 m,各海拔環境下的心率與平原比顯著升高,差異均有統計學意義(P <0.05或P<0.01).4000 m與5200 m比較,安靜狀態下、體力負荷後、恢複期,心率變化差異無統計學意義(P>0.05).(3)隨著海拔的升高,安靜狀態下、體力負荷後,相鄰各高海拔之間SaO2持續下降,差異均有統計學意義(P<0.05或P<0.01).(4)3000、4000、5200 m與平原比,VO2max分彆下降瞭6.2%、19.9%、22.3%.(5)安靜狀態下,5200 m時呼齣氣末耑C02量與平原比顯著減少,差異有統計學意義(P<0.01);與平原比,3000、4000、5200 m恢複期第3分鐘末呼齣氣末耑C02量顯著減少,差異均有統計學意義(P<0.01).結論 高海拔暴露及氦氧潛水後,人體心肺功能有一定的改善.
목적 재모의불동해발결양폭로급양양잠수조건하측정잠수원적상관생리지표,탐토불동해발잠수급체력부하대인체심、폐공능적영향.방법 4명잠수원재고、저압량용창내,련속9d분별폭로우모의평원(해발50 m)화해발3000、4000、5200 m배경중,재평원화3000、4000 m각두류2d,5200 m두류3d.분별재3000、4000 m모의30 m잠수,1차/d;재5200 m적제1천모의30 m잠수,제2천모의50 m잠수,제3천무잠수활동;잠수시간균위60 min.매천상오안정배경하,소유피시자정좌10 min후측정심솔화매박수출량.측시결속진행체력부하운동,피시자정좌재자행차공량계상1 min후측안정상태하적심솔、동맥혈양포화도(Sa02)、호출기말단C02량;연후진행5 min등차실험,부하0.5 kg,속도위60 r/min,용절박기공제등차절주,측매분종말심솔、Sa02,련속측5 min;등차결속후,피시자정좌재자행차상휴식,측매분종말심솔、Sa02、호출기말단CO2량,련속측3 min.매천하오진행모의잠수,재잠수정류기간진행심솔측시(평원상태불잠수,단진행대비측시).심솔변화치=부하제5분종심솔-회복제3분종심솔;근거심솔,이용Astrand.P.O렬선도,추산출인체적최대섭양량(V02max).결과 (1)재3000、4000 m모의30 m잠수시적심솔,비3000、4000 m폭로안정상태시적심솔분별하강료9.6%화6.9%.재5200 m모의30、50 m잠수시적심솔,비5200 m폭로안정상태시적심솔분별하강료7.6%화8.0%.각해발잠수시적심솔여재해해발폭로시안정상태하적심솔비균유하강추세,단차이균무통계학의의(P>0.05).재3000 m시매박수출량[(68.1±15.8) ml]비50 m안정시[(84.7±22.7)m1]명현하강,차이유통계학의의(P<0.05).(2)안정상태하、체력부하후、회복기,종평원도5200 m,각해발배경하적심솔여평원비현저승고,차이균유통계학의의(P <0.05혹P<0.01).4000 m여5200 m비교,안정상태하、체력부하후、회복기,심솔변화차이무통계학의의(P>0.05).(3)수착해발적승고,안정상태하、체력부하후,상린각고해발지간SaO2지속하강,차이균유통계학의의(P<0.05혹P<0.01).(4)3000、4000、5200 m여평원비,VO2max분별하강료6.2%、19.9%、22.3%.(5)안정상태하,5200 m시호출기말단C02량여평원비현저감소,차이유통계학의의(P<0.01);여평원비,3000、4000、5200 m회복기제3분종말호출기말단C02량현저감소,차이균유통계학의의(P<0.01).결론 고해발폭로급양양잠수후,인체심폐공능유일정적개선.
Objective To monitor physiological indexes of divers in simulated different high altitude helium-oxygen (heliox) diving,and also to explore the effect of different high-altitude diving and physical load on the cardiopulmonary function of divers.Methods In the dual-purpose hyperbaric-hypobaric chambers,4 divers were exposed to simulated altitudes of 50 (plain),3000,4000 and 5200 m for a succession of 9 days.The divers stayed at 50,3000 and 4000 m for 2 days respectively,but at 5200 m they stayed for 3 days.At 3000 and 4000 m,the divers conducted 30 m simulated dives,once a day.On the first day at 5200 m,the divers carried out a 30 m simulated dive,and on the second day a 50 m dive,but on the third day no diving activity was conducted.The duration of diving was all 60 minutes.Heart rate and stroke volume of the divers were detected every morning,after they sat at ease for 10 minutes.Heart rate,arterial oxygen saturation (SaO2) and exhaled end CO2 volume were measured after the divers took 1 min rest on the treadmill.Then,the divers had 5-minute treadmill exercise with load of 0.5 kg and speed of 60r/min.The pace of exercise was measured with a pacemeter,and heart rate and SaO2 at the end of each minute were detected for a succession of 5 minutes.After exercise,the divers sat at ease on the treadmill,and heart rate,SaO2 and exhaled end CO2 volume were recorded at the end of each minute for a succession of 3 minutes.Every afternoon,the divers carried out simulated dives,during which heart rate was monitored.(No diving at the plain,but the physiological indexes was measured,which was used as basic value).Change value of heart rate was the heart rate at the 5th minute subtracted by the recovery heart rate at the 3rd minute.The maximal oxygen uptake (VO2max) was thus calculated according to heart rate by using the Astrand P.O nomogram.Results (1) When the simulated 30 m dive was performed at the altitudes of 3 000 and 4 000 m,the heart rates of the divers decreased by 9.6% and 6.9% respectively,as compared with those of the same altitudes without dive.Likewise,when the simulated 30 and 50 m dives were conducted at the altitude of 5200 m,the divers' heart rates decreased by 7.6% and 8.0% respectively,as compared with those of the same altitude without dive.Heart rates at various high altitudes during the dives tended to decrease,when they were compared with those at the same high altitudes without dives,and statistical significance could be noted,when comparisons were made between them (P >0.05).The stroke volume at 3 000 m [(68.1± 15.8) ml] was significantly lower than that at 50 m [(84.72 ± 22.7) ml],with statistical significance (P < 0.05).(2) Heart rates at various high altitudes were significantly higher than that at the plain (50 m),no matter whether the divers were at rest,with physical load or during the stage of recovery,also with statistical significance (P < 0.05 or P < 0.01).No statistical significance could be noted in changes of heart rates,when heart rates of the divers at 4 000 m were compared with those at 5 000 m (P > 0.05).(3) With the elevation of altitudes,SaO2 levels at different altitudes decreased progressively,and statistical significance could be seen when comparisons were made between them(P <0.05 or P <0.01).(4) VO2max at 3000,4000 and 5200 m decreased by 6.2%,19.9%and 22.3% respectively,when compared with that at the plain.(5) When the divers were at rest,CO2 level in the exhaled end-tidal air at 5200 m decreased significantly than that at the plain,with statistical significance (P <0.01).When compared with that at the plain,CO2 levels in the exhaled end-tidal air at the end of 3 minutes during recovery at 3000,4000 and 5200 m decreased significantly,also with statistical significance (P <0.01).Conclusions Following simulated helium-oxygen diving at high altitudes,the cardiopulmonary function of the divers improved to a certain extent,with the tendency of turning for the better.