目的 制备液态氟碳(PFOB)纳米脂质微粒与全氟丙烷气体(C3F8)纳米脂质微泡,比较两者一般理化性质及体外显影效果.方法 分别制备PFOB纳米脂质微粒与C3F8纳米脂质微泡,检测2种造影剂形态、粒径、表面电位、浓度及稳定性,并进行比较.制备生物素化(外膜标记生物素)及空白(外膜未标记生物素)的PFOB脂质微粒及C3F8微泡造影剂.以高频探头观察各组造影剂加入亲和素前后的显影效果,并运用Matlab软件获得图像平均灰度值,再进行统计分析.2组间比较采用两样本t检验,同一样本多个时间点观察比较采用重复测量方差分析,组内不同时间点间两两比较采用Bonferroni法,同一样本加入亲和素前后的显影强度比较采用配对t检验.结果 (1)PFOB脂质微粒与C3F8脂质微泡粒径分别为(152.30±35.99) nm和(774.59±108.59)nm,前者明显小于后者(t=-24.327,P<0.001);表面电位分别为(-40.90±6.51)mV和(-14.80±3.97)mV,前者明显大于后者(t=-15.308,P<0.001).(2)PFOB脂质微粒造影剂的浓度及粒径在整个观察期间内无明显改变[C0h:(2.28 ±0.64) ×1011/ml,C1周:(2.06 ±0.53)×1011/ml; D0 h:(152.30±35.99) nm,D1周:(178.80±63.07)nm].C3F8脂质微泡造影剂制备后放置12 h,浓度[C0h:(4.08±0.96) ×1010/ml,C12 h:(3.25±1.02)×1010/ml]尚未发生明显改变,而放置24 h、2d、4d及1周后浓度明显减低[C24h:(2.28 ±0.73)×1010/ml,C2d:(1.56±0.54)×1010/ml,C4d:(1.03±0.37) ×1010/ml,C1周:(0.74±0.24)×1010/ml;F=78.515,P<0.01];C3F8微泡造影剂放置2d内粒径[D0h:(774.59±108.59) nm,D2d:(1020.68 ±223.64) nm]未见明显变化,放置4d及1周后粒径明显增大[D4d:(1391.67 ±268.65) nm,D1周:(1532.41±326.25) nm,F=50.772,P<0.01].(3)加入亲和素前,空白及生物素化PFOB脂质微粒均未见明显显影,而空白及生物素化C3F8脂质微泡均有较高的显影强度(31.34 ±7.03与28.75±7.18);加入亲和素之后,生物素化PFOB脂质微粒造影剂显影明显增强(2.18 ±0.71和82.19±15.68,t=-15.698,P<0.001),而空白PFOB脂质微粒及2组脂质C3F8微泡显影情况无明显改变.结论 与C3F8脂质微泡造影剂相比,以PFOB为核心的纳米脂质微粒造影剂在粒径优化和稳定性方面具有更好的可控性,且具有独特的显影特性,有利于制备靶向功能的超声造影剂.
目的 製備液態氟碳(PFOB)納米脂質微粒與全氟丙烷氣體(C3F8)納米脂質微泡,比較兩者一般理化性質及體外顯影效果.方法 分彆製備PFOB納米脂質微粒與C3F8納米脂質微泡,檢測2種造影劑形態、粒徑、錶麵電位、濃度及穩定性,併進行比較.製備生物素化(外膜標記生物素)及空白(外膜未標記生物素)的PFOB脂質微粒及C3F8微泡造影劑.以高頻探頭觀察各組造影劑加入親和素前後的顯影效果,併運用Matlab軟件穫得圖像平均灰度值,再進行統計分析.2組間比較採用兩樣本t檢驗,同一樣本多箇時間點觀察比較採用重複測量方差分析,組內不同時間點間兩兩比較採用Bonferroni法,同一樣本加入親和素前後的顯影彊度比較採用配對t檢驗.結果 (1)PFOB脂質微粒與C3F8脂質微泡粒徑分彆為(152.30±35.99) nm和(774.59±108.59)nm,前者明顯小于後者(t=-24.327,P<0.001);錶麵電位分彆為(-40.90±6.51)mV和(-14.80±3.97)mV,前者明顯大于後者(t=-15.308,P<0.001).(2)PFOB脂質微粒造影劑的濃度及粒徑在整箇觀察期間內無明顯改變[C0h:(2.28 ±0.64) ×1011/ml,C1週:(2.06 ±0.53)×1011/ml; D0 h:(152.30±35.99) nm,D1週:(178.80±63.07)nm].C3F8脂質微泡造影劑製備後放置12 h,濃度[C0h:(4.08±0.96) ×1010/ml,C12 h:(3.25±1.02)×1010/ml]尚未髮生明顯改變,而放置24 h、2d、4d及1週後濃度明顯減低[C24h:(2.28 ±0.73)×1010/ml,C2d:(1.56±0.54)×1010/ml,C4d:(1.03±0.37) ×1010/ml,C1週:(0.74±0.24)×1010/ml;F=78.515,P<0.01];C3F8微泡造影劑放置2d內粒徑[D0h:(774.59±108.59) nm,D2d:(1020.68 ±223.64) nm]未見明顯變化,放置4d及1週後粒徑明顯增大[D4d:(1391.67 ±268.65) nm,D1週:(1532.41±326.25) nm,F=50.772,P<0.01].(3)加入親和素前,空白及生物素化PFOB脂質微粒均未見明顯顯影,而空白及生物素化C3F8脂質微泡均有較高的顯影彊度(31.34 ±7.03與28.75±7.18);加入親和素之後,生物素化PFOB脂質微粒造影劑顯影明顯增彊(2.18 ±0.71和82.19±15.68,t=-15.698,P<0.001),而空白PFOB脂質微粒及2組脂質C3F8微泡顯影情況無明顯改變.結論 與C3F8脂質微泡造影劑相比,以PFOB為覈心的納米脂質微粒造影劑在粒徑優化和穩定性方麵具有更好的可控性,且具有獨特的顯影特性,有利于製備靶嚮功能的超聲造影劑.
목적 제비액태불탄(PFOB)납미지질미립여전불병완기체(C3F8)납미지질미포,비교량자일반이화성질급체외현영효과.방법 분별제비PFOB납미지질미립여C3F8납미지질미포,검측2충조영제형태、립경、표면전위、농도급은정성,병진행비교.제비생물소화(외막표기생물소)급공백(외막미표기생물소)적PFOB지질미립급C3F8미포조영제.이고빈탐두관찰각조조영제가입친화소전후적현영효과,병운용Matlab연건획득도상평균회도치,재진행통계분석.2조간비교채용량양본t검험,동일양본다개시간점관찰비교채용중복측량방차분석,조내불동시간점간량량비교채용Bonferroni법,동일양본가입친화소전후적현영강도비교채용배대t검험.결과 (1)PFOB지질미립여C3F8지질미포립경분별위(152.30±35.99) nm화(774.59±108.59)nm,전자명현소우후자(t=-24.327,P<0.001);표면전위분별위(-40.90±6.51)mV화(-14.80±3.97)mV,전자명현대우후자(t=-15.308,P<0.001).(2)PFOB지질미립조영제적농도급립경재정개관찰기간내무명현개변[C0h:(2.28 ±0.64) ×1011/ml,C1주:(2.06 ±0.53)×1011/ml; D0 h:(152.30±35.99) nm,D1주:(178.80±63.07)nm].C3F8지질미포조영제제비후방치12 h,농도[C0h:(4.08±0.96) ×1010/ml,C12 h:(3.25±1.02)×1010/ml]상미발생명현개변,이방치24 h、2d、4d급1주후농도명현감저[C24h:(2.28 ±0.73)×1010/ml,C2d:(1.56±0.54)×1010/ml,C4d:(1.03±0.37) ×1010/ml,C1주:(0.74±0.24)×1010/ml;F=78.515,P<0.01];C3F8미포조영제방치2d내립경[D0h:(774.59±108.59) nm,D2d:(1020.68 ±223.64) nm]미견명현변화,방치4d급1주후립경명현증대[D4d:(1391.67 ±268.65) nm,D1주:(1532.41±326.25) nm,F=50.772,P<0.01].(3)가입친화소전,공백급생물소화PFOB지질미립균미견명현현영,이공백급생물소화C3F8지질미포균유교고적현영강도(31.34 ±7.03여28.75±7.18);가입친화소지후,생물소화PFOB지질미립조영제현영명현증강(2.18 ±0.71화82.19±15.68,t=-15.698,P<0.001),이공백PFOB지질미립급2조지질C3F8미포현영정황무명현개변.결론 여C3F8지질미포조영제상비,이PFOB위핵심적납미지질미립조영제재립경우화화은정성방면구유경호적가공성,차구유독특적현영특성,유리우제비파향공능적초성조영제.
Objective To prepare two nano-scale ultrasound contrast agents,lipid particles and microbubbles,and to compare their physical and imaging enhancement characteristics.Methods Lipid nanoparticles were prepared with phospholipid and liquid perfluorocarbon (PFOB).Lipid microbubbles were prepared with phospholipid and perfluoropropane(C3F8).Physical and chemical properties of the two ultrasound contrast agents were measured,including morphology,size,zeta potential,concentration and stability.Both lipid nanoparticles and microbubbles with/without biotin were imaged using a 12.0 MHz linear-array transducer with/without avidin.The imaging data were analyzed by using Matlab software.Comparative data between the two groups were statistically analyzed by two-sample t test.Repeated measures analysis of variance was used among the observations at multiple time points within the same sample and Bonferroni method was used for post hoc analysis.Comparison of the signal intensity with and without avidin of the same sample was performed by paired t test.Results (1) Microscopically,both PFOB lipid particles and C3F8 microbubbles were in form of spheres.Their particle diameters were (152.30 ± 35.99) nm and (774.59 ± 108.59) nm,respectively (t =-24.327,P < 0.001).Their zeta potential was (-40.90 ±6.51) mV and (-14.80 ± 3.97) mV,respectively (t =-15.308,P < 0.001).(2) Concentration and size of PFOB lipid particles remained stable during the whole observation period (C0h =(2.28 ± 0.64) ×1011/ml,C1w =(2.06 ±0.53) × 1011/ml; D0h =(152.30 ±35.99) nm,D1 w =(178.80 ±63.07) nm).Concentrations of lipid microbubbles were stable within 12 h (C0h =(4.08 ± 0.96) × 1010/ml,C12h =(3.25 ± 1.02) × 1010/ml) ; and then reduced significantly after 24 h,2 d,4 d and 1 week (C24h:(2.28 ±0.73) ×1010/ml; C2d:(1.56±0.54) ×1010/ml; C4d:(1.03±0.37) ×1010/ml; C1w:(0.74 ±0.24) ×1010/ml ; F =78.515,P < 0.01).Diameters of the particles remained stable within 2 d (D0h =(774.59 ±108.59) nm,D2d =(1020.68 ± 223.64) nm) ; and then increased after 4 d and 1 week (D4d:(1391.67 ±268.65) nm; D1w:(1532.41 ± 326.25) nm,respectively,F =50.772,P < 0.01).(3) Neither control nor biotinylated PFOB particles were visible without avidin.With the addition of avidin,significantly enhanced images were generated by biotinylated PFOB particles (2.18 ±0.71,82.19 ± 15.68,t =-15.698,P < 0.001) but not with the control PFOB particles.Both control and biotinylated C3F8 microbubbles showed no significant difference in their signal intensity with/without avidin (29.16 ± 6.84 and 31.34 ±7.03,33.69±8.24 and28.75±7.18,t=0.653,-1.393,bothP>0.05).Conclusion Compared to C3F8 microbubbles,PFOB particles have smaller size,greater stability,higher SNR ratio and better imaging enhancement characteristics,therefore,more suitable for use as the target contrast agent for ultrasound imaging.