中华劳动卫生职业病杂志
中華勞動衛生職業病雜誌
중화노동위생직업병잡지
CHINESE JOURNAL OF INDUSTRIAL HYGIENE AND OCCUPATIONAL DISEASES
2014年
4期
246-250
,共5页
于光艳%陈强%刘晓梅%赵淑华%孙志伟
于光豔%陳彊%劉曉梅%趙淑華%孫誌偉
우광염%진강%류효매%조숙화%손지위
苯%超氧化物歧化酶%谷胱甘肽过氧化物酶%髓过氧化物酶%丙二醛%DNA
苯%超氧化物歧化酶%穀胱甘肽過氧化物酶%髓過氧化物酶%丙二醛%DNA
분%초양화물기화매%곡광감태과양화물매%수과양화물매%병이철%DNA
Benzene%Superoxide dismutase%Glutathione peroxidase%Myeloperoxidase%Malondialdehyde%DNA
目的 探讨气态苯吸入染毒小鼠骨髓细胞的遗传毒作用机制,为苯暴露人群的早期生物学标志提供实验依据.方法 将雄性小鼠随机分为4组,即对照组,低、中、高剂量苯染毒组(染毒剂量分别为400、800、1600 mg/m3),每组6只,进行静式染毒,每天2h.连续染毒15d后将小鼠全部处死,采用生物化学方法测定小鼠骨髓细胞超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、髓过氧化物酶(MPO)活力和丙二醛(MDA)含量;微核试验及单细胞凝胶电泳法测定小鼠骨髓细胞DNA损伤;免疫组织化学法测定MPO基因蛋白的表达情况.结果 各剂量苯组SOD活力(88.67±13.58、73.64±4.50、67.63±5.42) U/mg prot明显低于对照组(119.98±9.42) U/mg prot,差异有统计学意义(P<0.01);中、高剂量组SOD活力明显低于低剂量组,差异有统计学意义.中、高剂量组GSH-Px活力(705.07±93.75、674.77±86.80) U/mg prot明显低于对照组(940.25±82.63) U/mg prot,差异有统计学意义(P<0.01);高剂量组GSH-Px活力明显低于低剂量组(833.98±130.64) U/mg prot,差异有统计学意义(P<0.05).MDA含量(22.42±2.67、22.38±3.02、27.66±2.89) nmol/mg prot随染毒剂量的增加而升高,与对照组(12.35±1.58) nmol/mgprot相比,差异有统计学意义(P<0.01);高剂量组MDA含量明显高于中、低剂量组,差异有统计学意义(P<0.05).微核试验及单细胞凝胶电泳试验结果显示,各剂量组骨髓细胞微核率(4.67±0.82、5.00±0.89、5.33±1.03)‰明显高于对照组(2.50±0.55)‰,中、高剂量组DNA损伤率(22.08、25.68)%也明显高于对照组(7.00)%,差异有统计学意义(P<0.01);高剂量组与低剂量组(11.24)%比较,DNA损伤率有统计学意义(P<0.05).MPO活力(16.79±2.16、19.46±2.28、22.53±2.76) U/g prot随着染毒剂量的增加而升高,与对照组(12.89±0.74) U/g prot相比,差异有统计学意义(P<0.01),其蛋白表达阳性细胞率(13.20±2.28、30.80±3.35、40.20±1.92)%也明显高于对照组(6.60±1.14)%,且高剂量组MPO活力及中、高剂量组MPO蛋白表达阳性细胞率均明显高于低剂量组,差异均有统计学意义(P<0.01).结论 一定浓度的苯吸入染毒对小鼠骨髓细胞具有遗传毒作用,可导致染色体断裂和DNA损伤,并能增强MPO活性及蛋白表达,诱导脂质过氧化作用.脂质过氧化损伤可能是气态苯致小鼠骨髓细胞遗传毒性的重要机制之一.
目的 探討氣態苯吸入染毒小鼠骨髓細胞的遺傳毒作用機製,為苯暴露人群的早期生物學標誌提供實驗依據.方法 將雄性小鼠隨機分為4組,即對照組,低、中、高劑量苯染毒組(染毒劑量分彆為400、800、1600 mg/m3),每組6隻,進行靜式染毒,每天2h.連續染毒15d後將小鼠全部處死,採用生物化學方法測定小鼠骨髓細胞超氧化物歧化酶(SOD)、穀胱甘肽過氧化物酶(GSH-Px)、髓過氧化物酶(MPO)活力和丙二醛(MDA)含量;微覈試驗及單細胞凝膠電泳法測定小鼠骨髓細胞DNA損傷;免疫組織化學法測定MPO基因蛋白的錶達情況.結果 各劑量苯組SOD活力(88.67±13.58、73.64±4.50、67.63±5.42) U/mg prot明顯低于對照組(119.98±9.42) U/mg prot,差異有統計學意義(P<0.01);中、高劑量組SOD活力明顯低于低劑量組,差異有統計學意義.中、高劑量組GSH-Px活力(705.07±93.75、674.77±86.80) U/mg prot明顯低于對照組(940.25±82.63) U/mg prot,差異有統計學意義(P<0.01);高劑量組GSH-Px活力明顯低于低劑量組(833.98±130.64) U/mg prot,差異有統計學意義(P<0.05).MDA含量(22.42±2.67、22.38±3.02、27.66±2.89) nmol/mg prot隨染毒劑量的增加而升高,與對照組(12.35±1.58) nmol/mgprot相比,差異有統計學意義(P<0.01);高劑量組MDA含量明顯高于中、低劑量組,差異有統計學意義(P<0.05).微覈試驗及單細胞凝膠電泳試驗結果顯示,各劑量組骨髓細胞微覈率(4.67±0.82、5.00±0.89、5.33±1.03)‰明顯高于對照組(2.50±0.55)‰,中、高劑量組DNA損傷率(22.08、25.68)%也明顯高于對照組(7.00)%,差異有統計學意義(P<0.01);高劑量組與低劑量組(11.24)%比較,DNA損傷率有統計學意義(P<0.05).MPO活力(16.79±2.16、19.46±2.28、22.53±2.76) U/g prot隨著染毒劑量的增加而升高,與對照組(12.89±0.74) U/g prot相比,差異有統計學意義(P<0.01),其蛋白錶達暘性細胞率(13.20±2.28、30.80±3.35、40.20±1.92)%也明顯高于對照組(6.60±1.14)%,且高劑量組MPO活力及中、高劑量組MPO蛋白錶達暘性細胞率均明顯高于低劑量組,差異均有統計學意義(P<0.01).結論 一定濃度的苯吸入染毒對小鼠骨髓細胞具有遺傳毒作用,可導緻染色體斷裂和DNA損傷,併能增彊MPO活性及蛋白錶達,誘導脂質過氧化作用.脂質過氧化損傷可能是氣態苯緻小鼠骨髓細胞遺傳毒性的重要機製之一.
목적 탐토기태분흡입염독소서골수세포적유전독작용궤제,위분폭로인군적조기생물학표지제공실험의거.방법 장웅성소서수궤분위4조,즉대조조,저、중、고제량분염독조(염독제량분별위400、800、1600 mg/m3),매조6지,진행정식염독,매천2h.련속염독15d후장소서전부처사,채용생물화학방법측정소서골수세포초양화물기화매(SOD)、곡광감태과양화물매(GSH-Px)、수과양화물매(MPO)활력화병이철(MDA)함량;미핵시험급단세포응효전영법측정소서골수세포DNA손상;면역조직화학법측정MPO기인단백적표체정황.결과 각제량분조SOD활력(88.67±13.58、73.64±4.50、67.63±5.42) U/mg prot명현저우대조조(119.98±9.42) U/mg prot,차이유통계학의의(P<0.01);중、고제량조SOD활력명현저우저제량조,차이유통계학의의.중、고제량조GSH-Px활력(705.07±93.75、674.77±86.80) U/mg prot명현저우대조조(940.25±82.63) U/mg prot,차이유통계학의의(P<0.01);고제량조GSH-Px활력명현저우저제량조(833.98±130.64) U/mg prot,차이유통계학의의(P<0.05).MDA함량(22.42±2.67、22.38±3.02、27.66±2.89) nmol/mg prot수염독제량적증가이승고,여대조조(12.35±1.58) nmol/mgprot상비,차이유통계학의의(P<0.01);고제량조MDA함량명현고우중、저제량조,차이유통계학의의(P<0.05).미핵시험급단세포응효전영시험결과현시,각제량조골수세포미핵솔(4.67±0.82、5.00±0.89、5.33±1.03)‰명현고우대조조(2.50±0.55)‰,중、고제량조DNA손상솔(22.08、25.68)%야명현고우대조조(7.00)%,차이유통계학의의(P<0.01);고제량조여저제량조(11.24)%비교,DNA손상솔유통계학의의(P<0.05).MPO활력(16.79±2.16、19.46±2.28、22.53±2.76) U/g prot수착염독제량적증가이승고,여대조조(12.89±0.74) U/g prot상비,차이유통계학의의(P<0.01),기단백표체양성세포솔(13.20±2.28、30.80±3.35、40.20±1.92)%야명현고우대조조(6.60±1.14)%,차고제량조MPO활력급중、고제량조MPO단백표체양성세포솔균명현고우저제량조,차이균유통계학의의(P<0.01).결론 일정농도적분흡입염독대소서골수세포구유유전독작용,가도치염색체단렬화DNA손상,병능증강MPO활성급단백표체,유도지질과양화작용.지질과양화손상가능시기태분치소서골수세포유전독성적중요궤제지일.
Objective To investigate the mechanism of genetic toxicity of gaseous benzene to mouse bone marrow cells and to provide an experimental basis for the discovery of early biomarkers among benzeneexposed population.Methods Male mice were randomly divided into control group and three benzene-exposed groups (6 mice per group).The control group was exposed to ambient air,and the three benzene-exposed groups were exposed to different concentrations of benzene (400,800,and 1 600 mg/m3) for 15 days,2 hours per day,in static inhalation chambers.At the end of the 15-day experimental period,the mice were killed.Bone marrow cells were separated from sacrificed mice,and superoxide dismutase (SOD) activity,glutathione peroxidase (GSH-Px) activity,myeloperoxidase (MPO) activity,and malondialdehyde (MDA) content were determined by biochemical methods.DNA damage was evaluated by micronucleus assay and single cell gel electrophoresis (SCGE).The expression of MPO protein was determined by immunocytochemistry.Results The SOD activities in different dose groups (88.67 ±13.58,73.64±4.50,and 67.63 ±5.42 U/mg prot) were significantly decreased as compared with the control group (119.98±9.42 U/mg prot) (P<0.01).Moreover,the SOD activities in medium-and high-dose groups were significantly lower than that of the low-dose group (P<0.05).The GSH-Px activities in medium-and high-dose groups (705.07±93.75 and 674.77±86.80 U/mg prot)were siguificantly decreased as compared with that of the control group (940.25±82.63 U/mg prot) (P<0.01),and the high-dose group had a significantly lower GSH-Px activity than the low-dose group (674.77±86.80 U/mg prot vs 833.98±130.64 U/mg prot,P<0.05).The MDA content of low-,medium-,and high-dose groups (22.42 ±2.67,22.38 ±3.02,and 27.66±2.89 nmol/mg prot) were significantly higher than that of the control group (12.35±1.58 nmol/mg prot) (P<0.01),and MDA content was significantly higher in the high-dose group than in the medium-and low-dose groups (P<0.05).The micronucleus assay showed that the micronucleus rates in different dose groups (4.67±0.82‰,5.00±0.89‰,and 5.33±1.03‰) were significandy higher than that of the control group (2.50±0.55‰) (P<0.01).The SCGE demonstrated that the DNA damage rates of medium-and high-dose groups (22.08% and 25.68%) were significantly higher than that of the control group (7.00%) (P<0.01),and the DNA damage rate of high-dose group was significantly higher than that of the lowdose group (11.24%) (P<0.05).MPO activity increased with the dose of benzene in all three benzene-treated groups (16.79±2.16,19.46±2.28,and 22.53±2.76 U/g prot) and was significantly higher than that of the control group (12.89±0.74 U/g prot) (P<0.01).The positive rates of MPO protein expression in low-,medium-,and high-dose groups (13.20±2.28%,30.80±3.35%,and 40.20±1.92%) were significantly higher than that of the control group (6.60±1.14%) (P<0.01).The MPO activity in high-dose group and the positive rates of MPO protein expression in medium-and high-dose groups were all significantly higher than those of the low-dose group (P<0.01).Conclusion Gaseous benzene exposure has toxic effect on genetics of mouse bone marrow cells.It leads to chromosome breakage and DNA damage,enhances the activity and protein expression of MPO,and induces lipid peroxidation.Lipid peroxidation damage is a potential mechanism by which gaseous benzene exerts toxic effect on mouse bone marrow cells.