中华预防医学杂志
中華預防醫學雜誌
중화예방의학잡지
CHINESE JOURNAL OF
2012年
11期
1015-1019
,共5页
温度%城市%死亡率%分布滞后非线性模型%滞后效应
溫度%城市%死亡率%分佈滯後非線性模型%滯後效應
온도%성시%사망솔%분포체후비선성모형%체후효응
Temperature%Cities%Mortality%Distributed lag non-linear models%Lag effect
目的 对中国5个城市气温与死亡率关系进行分析,探讨气温对不同城市死亡率影响的滞后效应特点.方法 分别从中国CDC和气象网站获取北京、天津、上海、南京、长沙5个城市的人口和气象数据,采用R2.12.0软件的分布滞后非线性模型(DLNM)软件包将数据资料代入后进行分析.分析气象因素对死亡率的影响,累积效应,计算RR值.结果 北京、天津属于温带城市,上海、南京和长沙均属于亚热带季风气候.在气候与死亡效应的关系中,在日平均气温达30.0℃、滞后0d时,RR值最高,南京(1.31,95%CI:1.21 ~1.41)和长沙市(1.25,95%CI:1.13~1.39)的死亡率的RR值要高于北京(1.18,95% CI:1.12~1.25)、天津(1.18,95% CI:1.10~1.26)和上海市(1.15,95%CI:1.06 ~ 1.24).在总的滞后时间(30 d)内,各个城市的最低日平均气温对天津、长沙、北京、南京和上海市的死亡率的RR值分别为3.41,95% CI:1.60~7.27、2.15,95% CI:1.11~4.15、2.24,95%CI:1.12 ~4.48、2.80,95%CI:1.75 ~4.48、1.53,95%CI:1.12 ~2.03.日平均温度对死亡率的累积RR值有较为明显的“U”形曲线.极端高温和最高日平均气温对死亡率的相对危险度在滞后0~1d时RR值均>1;而低日平均气温在滞后2d后对死亡率有明显影响.结论 高温对死亡率具有急性效应的影响,而低温影响的滞后时间较长.极端低温和最低日平均气温对北京、天津地区城市居民死亡率的影响较大,而极端高温和日最高平均气温则对上海、南京、长沙的影响较大.
目的 對中國5箇城市氣溫與死亡率關繫進行分析,探討氣溫對不同城市死亡率影響的滯後效應特點.方法 分彆從中國CDC和氣象網站穫取北京、天津、上海、南京、長沙5箇城市的人口和氣象數據,採用R2.12.0軟件的分佈滯後非線性模型(DLNM)軟件包將數據資料代入後進行分析.分析氣象因素對死亡率的影響,纍積效應,計算RR值.結果 北京、天津屬于溫帶城市,上海、南京和長沙均屬于亞熱帶季風氣候.在氣候與死亡效應的關繫中,在日平均氣溫達30.0℃、滯後0d時,RR值最高,南京(1.31,95%CI:1.21 ~1.41)和長沙市(1.25,95%CI:1.13~1.39)的死亡率的RR值要高于北京(1.18,95% CI:1.12~1.25)、天津(1.18,95% CI:1.10~1.26)和上海市(1.15,95%CI:1.06 ~ 1.24).在總的滯後時間(30 d)內,各箇城市的最低日平均氣溫對天津、長沙、北京、南京和上海市的死亡率的RR值分彆為3.41,95% CI:1.60~7.27、2.15,95% CI:1.11~4.15、2.24,95%CI:1.12 ~4.48、2.80,95%CI:1.75 ~4.48、1.53,95%CI:1.12 ~2.03.日平均溫度對死亡率的纍積RR值有較為明顯的“U”形麯線.極耑高溫和最高日平均氣溫對死亡率的相對危險度在滯後0~1d時RR值均>1;而低日平均氣溫在滯後2d後對死亡率有明顯影響.結論 高溫對死亡率具有急性效應的影響,而低溫影響的滯後時間較長.極耑低溫和最低日平均氣溫對北京、天津地區城市居民死亡率的影響較大,而極耑高溫和日最高平均氣溫則對上海、南京、長沙的影響較大.
목적 대중국5개성시기온여사망솔관계진행분석,탐토기온대불동성시사망솔영향적체후효응특점.방법 분별종중국CDC화기상망참획취북경、천진、상해、남경、장사5개성시적인구화기상수거,채용R2.12.0연건적분포체후비선성모형(DLNM)연건포장수거자료대입후진행분석.분석기상인소대사망솔적영향,루적효응,계산RR치.결과 북경、천진속우온대성시,상해、남경화장사균속우아열대계풍기후.재기후여사망효응적관계중,재일평균기온체30.0℃、체후0d시,RR치최고,남경(1.31,95%CI:1.21 ~1.41)화장사시(1.25,95%CI:1.13~1.39)적사망솔적RR치요고우북경(1.18,95% CI:1.12~1.25)、천진(1.18,95% CI:1.10~1.26)화상해시(1.15,95%CI:1.06 ~ 1.24).재총적체후시간(30 d)내,각개성시적최저일평균기온대천진、장사、북경、남경화상해시적사망솔적RR치분별위3.41,95% CI:1.60~7.27、2.15,95% CI:1.11~4.15、2.24,95%CI:1.12 ~4.48、2.80,95%CI:1.75 ~4.48、1.53,95%CI:1.12 ~2.03.일평균온도대사망솔적루적RR치유교위명현적“U”형곡선.겁단고온화최고일평균기온대사망솔적상대위험도재체후0~1d시RR치균>1;이저일평균기온재체후2d후대사망솔유명현영향.결론 고온대사망솔구유급성효응적영향,이저온영향적체후시간교장.겁단저온화최저일평균기온대북경、천진지구성시거민사망솔적영향교대,이겁단고온화일최고평균기온칙대상해、남경、장사적영향교대.
Objective To study the characteristics of the effect of different temperatures on mortality of different cities through analyzing the relationship between mortality and meteorology of five Chinese cities.Methods We get the demography and climate data of Beijing,Tianjin,Shanghai,Nanjing and Changsha cities from National Center of Disease Control and Prevention and Climate net respectively.Then we applied the R software and Distributed Lag Non-linear Models ( DLNM ) package to analyze our data and find the nonlinear and lag effects on mortality using DLNM.Results The city of Beijing and Tianjin are located in the temperate zone.And the climate of Shanghai,Nanjing,Changsha belong to subtropical monsoon climate.When the daily mean temperature arrived 30 ℃ and on lag 0 day,the values of relative risk of effect of high mean temperature on mortality in Nanjing( 1.31,95% CI:1.21-1.41 ) and Changsha ( 1.25,95% CI:1.13-1.39) are larger than that in Beijing( 1.18,95% CI:1.12-1.25),Tianjin ( 1.18,95 % CI:1.10-1.26) and Shanghai ( 1.15,95 % CI:1.06-1.24).While the relative risk of effect of low mean temperature on mortality is lower and lasts for a longer lag time.During the whole lag time,the relative risk of effect of the lowest daily mean temperature of each city on mortality in Tianjin,Changsha,Beijing,Nanjing,and Shanghai is 3.41,95% CI:1.60-7.27,2.15,95% CI:1.11-4.15,2.24,95% CI:1.12-4.48,2.80,95% CI:1.75-4.48,1.53,95% CI:1.12-2.03,respectively.The cumulative effect of mean temperature on mortality appears like a U-shape.When on lag 0-1 day,the value of relative risk of effect of extremely high temperature and the highest mean temperature on mortality is larger than 1.While the effect of low temperature on mortality becomes obvious after lag 2 days.Conclusion Depending on this research,extremely low temperature and the lowest mean temperature has a more obvious impact on mortality in the northern area than in the south.Extremely high temperature and the highest daily mean temperature is on the contrary.Meanwhile,different temperatures have different impacts on mortality in the same city:high temperature has an acute impact while there is a longer lag time in low temperature.