中华预防医学杂志
中華預防醫學雜誌
중화예방의학잡지
CHINESE JOURNAL OF
2013年
2期
151-154
,共4页
叶金波%刘威%周桂凤%任晓虎%黄培武%洪文旭%黄海燕%刘建军
葉金波%劉威%週桂鳳%任曉虎%黃培武%洪文旭%黃海燕%劉建軍
협금파%류위%주계봉%임효호%황배무%홍문욱%황해연%류건군
三氯乙烯%皮炎,职业性%诊断%血清多肽指纹图谱
三氯乙烯%皮炎,職業性%診斷%血清多肽指紋圖譜
삼록을희%피염,직업성%진단%혈청다태지문도보
Trichloroethylene%Dermatitis,occupational%Diagnosis%Polypeptides fingerprint of serum
目的 应用弱阳离子交换磁珠(magnetic beads based weak cation exchange chromatography,MB-WCX)、基质辅助激光解析电离飞行时间质谱(matrix-assisted laser desorption ionization time-of-flight mass spectrometry,MALDI-TOF-MS)和ClinProTools生物信息学方法检测职业性三氯乙烯药疹样皮炎(occupational medicamentosa-like dermatitis induced by trichloroethylene,OMLDT)患者的血清多肽指纹图谱,建立OMLDT诊断模型.方法 收集2009年12月至2010年10月经深圳市职业病防治院诊断的OMLDT患者和对照人群血清样品各28份,选取其中的患者和对照人群血清样品各14份作为建模组,采用MB-WCX联合MALDI-TOF-MS技术检测血清多肽指纹图谱,筛选OMLDT特征性多肽标志并建立OMLDT疾病蛋白质组学诊断模型.用其余的14份患者和14份对照人群的血清样作为验证组,评价模型的准确度和识别率.结果 应用ClinProTools软件,共得到159个峰,33个为有统计学意义的峰(P<0.05).其中,相对于对照组,建模组的病例组中有20个峰表达降低,有13个表达增高.采用监督神经网络算法(supervised neural network algorithm,SNN)对多肽峰进行筛选,质荷比(m/z)为2106.29和3263.78的2个多肽峰受试者工作特征曲线(receiver operating characteristic curve,ROC)的下面积(The area under the ROC curve,AUC)最接近1,最能区分病例组和对照组,2D分布图上也能明显区分,选择这2个多肽峰构建OMLDT的诊断模型.诊断模型的交叉验证和识别能力分别是87.5%和98.5%,灵敏度和特异度分别为84.8%和82.1%.结论 应用MB-WCX、MALDI-TOF-MS技术结合ClinProTools软件首次对OMLDT建立诊断模型并验证,筛选到了特异性差异多肽,具备较高的灵敏度和特异度,为临床早期诊断提供了科学依据.
目的 應用弱暘離子交換磁珠(magnetic beads based weak cation exchange chromatography,MB-WCX)、基質輔助激光解析電離飛行時間質譜(matrix-assisted laser desorption ionization time-of-flight mass spectrometry,MALDI-TOF-MS)和ClinProTools生物信息學方法檢測職業性三氯乙烯藥疹樣皮炎(occupational medicamentosa-like dermatitis induced by trichloroethylene,OMLDT)患者的血清多肽指紋圖譜,建立OMLDT診斷模型.方法 收集2009年12月至2010年10月經深圳市職業病防治院診斷的OMLDT患者和對照人群血清樣品各28份,選取其中的患者和對照人群血清樣品各14份作為建模組,採用MB-WCX聯閤MALDI-TOF-MS技術檢測血清多肽指紋圖譜,篩選OMLDT特徵性多肽標誌併建立OMLDT疾病蛋白質組學診斷模型.用其餘的14份患者和14份對照人群的血清樣作為驗證組,評價模型的準確度和識彆率.結果 應用ClinProTools軟件,共得到159箇峰,33箇為有統計學意義的峰(P<0.05).其中,相對于對照組,建模組的病例組中有20箇峰錶達降低,有13箇錶達增高.採用鑑督神經網絡算法(supervised neural network algorithm,SNN)對多肽峰進行篩選,質荷比(m/z)為2106.29和3263.78的2箇多肽峰受試者工作特徵麯線(receiver operating characteristic curve,ROC)的下麵積(The area under the ROC curve,AUC)最接近1,最能區分病例組和對照組,2D分佈圖上也能明顯區分,選擇這2箇多肽峰構建OMLDT的診斷模型.診斷模型的交扠驗證和識彆能力分彆是87.5%和98.5%,靈敏度和特異度分彆為84.8%和82.1%.結論 應用MB-WCX、MALDI-TOF-MS技術結閤ClinProTools軟件首次對OMLDT建立診斷模型併驗證,篩選到瞭特異性差異多肽,具備較高的靈敏度和特異度,為臨床早期診斷提供瞭科學依據.
목적 응용약양리자교환자주(magnetic beads based weak cation exchange chromatography,MB-WCX)、기질보조격광해석전리비행시간질보(matrix-assisted laser desorption ionization time-of-flight mass spectrometry,MALDI-TOF-MS)화ClinProTools생물신식학방법검측직업성삼록을희약진양피염(occupational medicamentosa-like dermatitis induced by trichloroethylene,OMLDT)환자적혈청다태지문도보,건립OMLDT진단모형.방법 수집2009년12월지2010년10월경심수시직업병방치원진단적OMLDT환자화대조인군혈청양품각28빈,선취기중적환자화대조인군혈청양품각14빈작위건모조,채용MB-WCX연합MALDI-TOF-MS기술검측혈청다태지문도보,사선OMLDT특정성다태표지병건립OMLDT질병단백질조학진단모형.용기여적14빈환자화14빈대조인군적혈청양작위험증조,평개모형적준학도화식별솔.결과 응용ClinProTools연건,공득도159개봉,33개위유통계학의의적봉(P<0.05).기중,상대우대조조,건모조적병례조중유20개봉표체강저,유13개표체증고.채용감독신경망락산법(supervised neural network algorithm,SNN)대다태봉진행사선,질하비(m/z)위2106.29화3263.78적2개다태봉수시자공작특정곡선(receiver operating characteristic curve,ROC)적하면적(The area under the ROC curve,AUC)최접근1,최능구분병례조화대조조,2D분포도상야능명현구분,선택저2개다태봉구건OMLDT적진단모형.진단모형적교차험증화식별능력분별시87.5%화98.5%,령민도화특이도분별위84.8%화82.1%.결론 응용MB-WCX、MALDI-TOF-MS기술결합ClinProTools연건수차대OMLDT건립진단모형병험증,사선도료특이성차이다태,구비교고적령민도화특이도,위림상조기진단제공료과학의거.
Objective Based on magnetic beads based weak cation exchange chromatography(MB-WCX),matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) and ClinProTools software,the polypeptides of serum about occupational medicamentosa-like dermatitis induced by trichloroethylene (OMLDT) patients were studied,and a diagnostic model of OMLDT was built.Methods According to diagnostic criteria of OMLDT,serum of 28 OMLDT patients and 28 controls which were diagnosed by Shenzhen prevention and treatment center for occupational disease were collected.With the combination of MB-WCX and MALDI-TOF-MS,the polypeptides fingerprint of serum of 14 OMLDT patients and 14 controls were detectcd,what's more,the ClinProTools softwarc and SNN algorithm was used for screening characteristic polypeptides and establishing diagnostic model of OMLDT.Then other objects were applied to validate the model to evaluate accuracy.Results A total of 159 peaks were attained by ClinProTools software,of which 33 peaks were statistical content(P < 0.05).What is more,comparing with the control group,20 peaks in case group were decreased,and 13 peaks were increased.Two pcaks of them were identified,that is 2106.29 and 3263.78,to classify and determine that two groups by receiver operating characteristic curve(ROC) analysis.2D peaks distribution map certified this finding and the area under the ROC curve was closed to 1.A model was established by SNN algorithm,whose cross validation and recognition capability were 87.5% and 98.5%,respectively.Its sensitivity and specificity were 84.8% and 82.1%,separately,which displayed good separating capacity.Conclusion In the combination of MBWCX,MALDI-TOF-MS and ClinProTools software,specifical different polypeptides were screened and OMLDT diagnostic model was built primarily.Also,the model and the results were positively validated,which would play a significant role in early diagnosis.