中华预防医学杂志
中華預防醫學雜誌
중화예방의학잡지
CHINESE JOURNAL OF
2014年
5期
401-405
,共5页
胡梦珏%马文军%张永慧%许燕君%许晓君%林华亮%刘涛%肖建鹏%罗圆
鬍夢玨%馬文軍%張永慧%許燕君%許曉君%林華亮%劉濤%肖建鵬%囉圓
호몽각%마문군%장영혜%허연군%허효군%림화량%류도%초건붕%라원
社会经济因素%温度%死亡%修饰效应%时间序列研究
社會經濟因素%溫度%死亡%脩飾效應%時間序列研究
사회경제인소%온도%사망%수식효응%시간서렬연구
Socio-economic factors%Temperature%Mortality%Modifying effects%Time serious study
目的 调查中国南方不同城市社会经济因素对温度-死亡暴露反应关系的影响.方法 收集2006-2009年长沙市、昆明市和2006-2010年广州市、珠海市全人群日死亡登记资料、气象资料与大气污染物数据,利用分布滞后非线性模型研究不同城市温度对不同年龄组、不同性别、不同文化程度和不同死亡地点人群死亡的影响,分别分析各城市在高温(0~3 d)和低温(0~20 d)时对不同特征人群的温度-死亡累积效应大小,并用一般线性阈值模型评估温度与人群死亡的关系,先对每个城市进行分析,然后用Meta分析对多个城市进行效应合并.结果 4个城市温度与死亡关系呈非线性,长沙、昆明、广州、珠海最小死亡风险温度分别为23.5℃、20.5℃、25.0℃、26.0℃.经过效应合并可知,低温(RR=1.67,95%CI:1.54 ~ 1.80)对人群的总效应高于高温(RR=1.11,95%CI:1.01~1.18)的影响.随着年龄增加,高温和低温的死亡风险均增加,且低温(RR=1.83,95%CI:1.65 ~2.04)对65岁以上老年人的死亡风险大于高温(RR=1.17,95%CI:1.03~1.33);女性死亡风险[冷、热效应RR(95% CI)值分别为1.75(1.57~1.97)、1.11(0.99~1.25)]较男性高[冷、热效应RR(95%CI)值分别为1.59(1.45 ~1.77)、1.11(1.03~1.19)];大学及以上学历人群的死亡风险[冷、热效应RR(95% CI)值分别为1.89(1.48 ~2.45)、1.34(1.19~1.48)]高于其他学历人群.结论 年龄、性别、文化程度和死亡地点对温度-死亡暴露反应关系有效应修饰作用.老年人、女性、高学历者是温度影响死亡的脆弱人群.
目的 調查中國南方不同城市社會經濟因素對溫度-死亡暴露反應關繫的影響.方法 收集2006-2009年長沙市、昆明市和2006-2010年廣州市、珠海市全人群日死亡登記資料、氣象資料與大氣汙染物數據,利用分佈滯後非線性模型研究不同城市溫度對不同年齡組、不同性彆、不同文化程度和不同死亡地點人群死亡的影響,分彆分析各城市在高溫(0~3 d)和低溫(0~20 d)時對不同特徵人群的溫度-死亡纍積效應大小,併用一般線性閾值模型評估溫度與人群死亡的關繫,先對每箇城市進行分析,然後用Meta分析對多箇城市進行效應閤併.結果 4箇城市溫度與死亡關繫呈非線性,長沙、昆明、廣州、珠海最小死亡風險溫度分彆為23.5℃、20.5℃、25.0℃、26.0℃.經過效應閤併可知,低溫(RR=1.67,95%CI:1.54 ~ 1.80)對人群的總效應高于高溫(RR=1.11,95%CI:1.01~1.18)的影響.隨著年齡增加,高溫和低溫的死亡風險均增加,且低溫(RR=1.83,95%CI:1.65 ~2.04)對65歲以上老年人的死亡風險大于高溫(RR=1.17,95%CI:1.03~1.33);女性死亡風險[冷、熱效應RR(95% CI)值分彆為1.75(1.57~1.97)、1.11(0.99~1.25)]較男性高[冷、熱效應RR(95%CI)值分彆為1.59(1.45 ~1.77)、1.11(1.03~1.19)];大學及以上學歷人群的死亡風險[冷、熱效應RR(95% CI)值分彆為1.89(1.48 ~2.45)、1.34(1.19~1.48)]高于其他學歷人群.結論 年齡、性彆、文化程度和死亡地點對溫度-死亡暴露反應關繫有效應脩飾作用.老年人、女性、高學歷者是溫度影響死亡的脆弱人群.
목적 조사중국남방불동성시사회경제인소대온도-사망폭로반응관계적영향.방법 수집2006-2009년장사시、곤명시화2006-2010년엄주시、주해시전인군일사망등기자료、기상자료여대기오염물수거,이용분포체후비선성모형연구불동성시온도대불동년령조、불동성별、불동문화정도화불동사망지점인군사망적영향,분별분석각성시재고온(0~3 d)화저온(0~20 d)시대불동특정인군적온도-사망루적효응대소,병용일반선성역치모형평고온도여인군사망적관계,선대매개성시진행분석,연후용Meta분석대다개성시진행효응합병.결과 4개성시온도여사망관계정비선성,장사、곤명、엄주、주해최소사망풍험온도분별위23.5℃、20.5℃、25.0℃、26.0℃.경과효응합병가지,저온(RR=1.67,95%CI:1.54 ~ 1.80)대인군적총효응고우고온(RR=1.11,95%CI:1.01~1.18)적영향.수착년령증가,고온화저온적사망풍험균증가,차저온(RR=1.83,95%CI:1.65 ~2.04)대65세이상노년인적사망풍험대우고온(RR=1.17,95%CI:1.03~1.33);녀성사망풍험[랭、열효응RR(95% CI)치분별위1.75(1.57~1.97)、1.11(0.99~1.25)]교남성고[랭、열효응RR(95%CI)치분별위1.59(1.45 ~1.77)、1.11(1.03~1.19)];대학급이상학력인군적사망풍험[랭、열효응RR(95% CI)치분별위1.89(1.48 ~2.45)、1.34(1.19~1.48)]고우기타학력인군.결론 년령、성별、문화정도화사망지점대온도-사망폭로반응관계유효응수식작용.노년인、녀성、고학력자시온도영향사망적취약인군.
Objective To explore the impact of the socio-economic factors on the temperature-mortality association in different cities in southern China.Methods Daily mortality registration data,meteorological data and air pollution data of the cities as Changsha and Kunming during 2006-2009,and cities as Guangzhou and Zhuhai during 2006-2010,were collected to explore modifying effects,stratified by age,gender,education and place of death,of socio-economic factors on the association between temperature and mortality,by distributed lag non-linear model.The accumulative effect of temperature-mortality were separately analyzed in each city,under the high temperature (0-3 days) and low temperature (0-20 days) situation.The association between temperature and mortality was evaluated by general linear threshold model.The above process was firstly adopted to analyze the impact in single city and then Meta analysis was applied to analyze the impact in several cities by effect-combine.Results The relationship between temperature and mortality in the four cities showed nonlinearity.The minimum mortality risk was separately 23.5 ℃,20.5 ℃,25.0 ℃ and 26.0 ℃ in Changsha,Kunming,Guangzhou and Zhuhai.The results of effect-combine showed that low-temperature (RR =1.67,95% CI:1.54-1.80) has a higher gross effect than high-temperature (RR =1.11,95% CI:1.01-1.18) on population.With the age increasing,risk of death increased both under high and low temperature situation,and the effect of low temperature was greater (RR =1.83,95% CI:1.65-2.04) for the elderly than it of high temperature (RR =1.17,95% CI:1.03-1.33).The mortality risk among females (cold and hot effects(95% CI) were 1.75 (1.57-1.97) and 1.11 (0.99-1.25),respectively)was higher than it among males (cold and hot effects (95% CI) were 1.59 (1.45-1.77) and 1.11 (1.03-1.19),respectively).Whereas the mortality risk on higher education population was significantly higher (cold and hot effects (95% CI) were 1.89(1.48-2.45) and 1.34(1.19-1.48),respectively) than it on other educated people.Conclusion Age,gender,educational level and place of death showed modifying effects on the association between temperature and mortality.The elderly,women and highly educated people were vulnerable to the temperature influence on mortality.