肿瘤研究与临床
腫瘤研究與臨床
종류연구여림상
CANCER RESEARCH AND CLINIC
2014年
9期
583-586
,共4页
曾玮%刘孟刚%刘宏鸣%谢斌%袁涛%杨俊涛%蓝翔%陈平
曾瑋%劉孟剛%劉宏鳴%謝斌%袁濤%楊俊濤%藍翔%陳平
증위%류맹강%류굉명%사빈%원도%양준도%람상%진평
癌,胰腺管%共表达网络%预后%分子机制
癌,胰腺管%共錶達網絡%預後%分子機製
암,이선관%공표체망락%예후%분자궤제
Neoplasms,pancreatic ductal%Co-expression network%Prognosis%Molecular mechanism
目的 结合胰腺导管癌(PDAC)表达谱数据、临床资料以及分析基因共表达网络,定义PDAC预后相关的基因,并挖掘其预后相关的分子调控机制.方法 通过Cox生存分析寻找表达水平与生存时间相关的基因(P< 0.000 1).计算得到的相关基因之间的共表达关系,建立共表达网络,进一步寻找网络中核心模块.结果 Cox生存分析得到273个与患者的生存数据相关的候选基因,构建共表达网络[Pearson相关系数(r)> 0.9,P<0.05]寻找核心模块(MCODE算法,得分>2),最后发现1个包含6个基因(PTMAP7、FTSJ3、TLK2、GOLGA3、PTTG1IP、ZBTB37) 14个共表达关系的核心模块.其中GOLGA3基因已经被发现与PDAC的转移侵染有关;其他基因也都被研究发现属于已知癌基因.结论 构建的PDAC相关基因的共表达模块与PDAC预后相关,且可能作为PDAC预后相关标志分子.
目的 結閤胰腺導管癌(PDAC)錶達譜數據、臨床資料以及分析基因共錶達網絡,定義PDAC預後相關的基因,併挖掘其預後相關的分子調控機製.方法 通過Cox生存分析尋找錶達水平與生存時間相關的基因(P< 0.000 1).計算得到的相關基因之間的共錶達關繫,建立共錶達網絡,進一步尋找網絡中覈心模塊.結果 Cox生存分析得到273箇與患者的生存數據相關的候選基因,構建共錶達網絡[Pearson相關繫數(r)> 0.9,P<0.05]尋找覈心模塊(MCODE算法,得分>2),最後髮現1箇包含6箇基因(PTMAP7、FTSJ3、TLK2、GOLGA3、PTTG1IP、ZBTB37) 14箇共錶達關繫的覈心模塊.其中GOLGA3基因已經被髮現與PDAC的轉移侵染有關;其他基因也都被研究髮現屬于已知癌基因.結論 構建的PDAC相關基因的共錶達模塊與PDAC預後相關,且可能作為PDAC預後相關標誌分子.
목적 결합이선도관암(PDAC)표체보수거、림상자료이급분석기인공표체망락,정의PDAC예후상관적기인,병알굴기예후상관적분자조공궤제.방법 통과Cox생존분석심조표체수평여생존시간상관적기인(P< 0.000 1).계산득도적상관기인지간적공표체관계,건립공표체망락,진일보심조망락중핵심모괴.결과 Cox생존분석득도273개여환자적생존수거상관적후선기인,구건공표체망락[Pearson상관계수(r)> 0.9,P<0.05]심조핵심모괴(MCODE산법,득분>2),최후발현1개포함6개기인(PTMAP7、FTSJ3、TLK2、GOLGA3、PTTG1IP、ZBTB37) 14개공표체관계적핵심모괴.기중GOLGA3기인이경피발현여PDAC적전이침염유관;기타기인야도피연구발현속우이지암기인.결론 구건적PDAC상관기인적공표체모괴여PDAC예후상관,차가능작위PDAC예후상관표지분자.
Objective To detect genes expression related to the prognosis of pancreatic ductal adenocarcinoma (PDAC) and explore the potential molecular mechanism applying PDAC gene expression data,co-expression network and clinical data.Methods Univariate Cox proportional hazards model was used to find genes which were significantly correlated with patient survival data (P < 0.000 1).Then calculated the correlation coefficient of these genes to establish co-expression network and found key modules of the network.Results 273 candidate genes were found related to survival data.With these genes,genes co-expression network (Pearson correlation r > 0.9,P < 0.05) and key modules were constructed,and then,a key module including 6 genes (PTMAP7,FTSJ3,TLK2,GOLGA3,PTTG1IP,ZBTB37) and 14 co-expression relationships between them were found.Among these genes,GOLGA3 had been known to associate with invasion and metastasis of PDAC,and the other 5 genes were all known as cancer genes.Conclusion These findings may suggest that these 6 survival genes in the key module of co-expression network are highly associated with the prognosis of PDAC,and may be biomarkers for PDAC prognosis.