中华创伤杂志
中華創傷雜誌
중화창상잡지
Chinese Journal of Traumatology
2013年
10期
946-954
,共9页
胡勇%袁振山%谢辉%袁建兵%董伟鑫%王成焘
鬍勇%袁振山%謝輝%袁建兵%董偉鑫%王成燾
호용%원진산%사휘%원건병%동위흠%왕성도
脊柱损伤%颈椎%关节突关节螺钉
脊柱損傷%頸椎%關節突關節螺釘
척주손상%경추%관절돌관절라정
Spinal injuries%Cervical vertebrae%Transarticular screws
目的 验证在快速成型导向模板(rapid prototyping drill template,RPDT)辅助下经后路寰枢椎经关节突关节螺钉置钉的安全性、准确性及偏差因素分析. 方法 选取正常颈椎标本12具,采用64排螺旋CT(层厚1 mm)扫描后获得Dicom格式数据.获取数据经Mimics软件三维重建后进行寰枢椎经关节突关节螺钉最佳安全钉道的计算机辅助设计,并建立与枢椎后表面解剖结构三维互补的基板,组合形成导向模板.在激光快速成型机上进行导板实体化,利用RPDT辅助置钉.扫描置钉后的标本,分割重建出螺钉钉道路径.在计算机软件中将置钉前后的标本配对拟合,重新定义三维空间坐标轴后,测量理想钉道和实际螺钉的进针点、角度和钉道方向. 结果 置入寰枢椎经关节突关节螺钉24枚,均未穿破骨皮质.寰枢椎经关节突关节螺钉左右侧最佳安全钉道深度分别为(37.34±2.31) mm、(37.11 ±2.21) mm.寰枢椎经关节突关节螺钉左右侧最佳安全钉道内倾角均为0°.寰枢椎经关节突关节螺钉左右侧实际钉道内倾角分别为(0.15±0.58)°、(0.11±0.46)°.寰枢椎经关节突关节螺钉左右侧最佳安全钉道尾仰角分别为(49.35±1.62)°、(48.83 ± 1.83)°.寰枢椎经关节突关节螺钉左右侧实际钉道平均尾仰角分别为(49.29±1.68)°、(49.10±1.45)°.寰枢椎经关节突关节螺钉左侧进针点在x、y、z轴上的偏移值分别为(0.21 ±0.65) mm、(0.69 ±1.48) mm、(0.39±0.11) mm.寰枢椎经关节突关节螺钉右侧进针点在x、y、z轴上的偏移值分别为(0.19 ±0.66) mm、(0.53±1.45) mm、(0.38±0.13) mm.寰枢椎经关节突关节螺钉最佳安全钉道和实际钉道的进针点、钉道方向的偏差差异无统计学意义(P>0.05). 结论 寰枢椎经关节突关节螺钉RPDT辅助置钉偏差原因主要为硬件和软件存在的固有因素和操作过程中人为产生的因素.RPDT技术具有操作简易和个体化设计等优点,能极大地提高置钉精准性及减少螺钉偏差,有较广泛的适用人群.
目的 驗證在快速成型導嚮模闆(rapid prototyping drill template,RPDT)輔助下經後路寰樞椎經關節突關節螺釘置釘的安全性、準確性及偏差因素分析. 方法 選取正常頸椎標本12具,採用64排螺鏇CT(層厚1 mm)掃描後穫得Dicom格式數據.穫取數據經Mimics軟件三維重建後進行寰樞椎經關節突關節螺釘最佳安全釘道的計算機輔助設計,併建立與樞椎後錶麵解剖結構三維互補的基闆,組閤形成導嚮模闆.在激光快速成型機上進行導闆實體化,利用RPDT輔助置釘.掃描置釘後的標本,分割重建齣螺釘釘道路徑.在計算機軟件中將置釘前後的標本配對擬閤,重新定義三維空間坐標軸後,測量理想釘道和實際螺釘的進針點、角度和釘道方嚮. 結果 置入寰樞椎經關節突關節螺釘24枚,均未穿破骨皮質.寰樞椎經關節突關節螺釘左右側最佳安全釘道深度分彆為(37.34±2.31) mm、(37.11 ±2.21) mm.寰樞椎經關節突關節螺釘左右側最佳安全釘道內傾角均為0°.寰樞椎經關節突關節螺釘左右側實際釘道內傾角分彆為(0.15±0.58)°、(0.11±0.46)°.寰樞椎經關節突關節螺釘左右側最佳安全釘道尾仰角分彆為(49.35±1.62)°、(48.83 ± 1.83)°.寰樞椎經關節突關節螺釘左右側實際釘道平均尾仰角分彆為(49.29±1.68)°、(49.10±1.45)°.寰樞椎經關節突關節螺釘左側進針點在x、y、z軸上的偏移值分彆為(0.21 ±0.65) mm、(0.69 ±1.48) mm、(0.39±0.11) mm.寰樞椎經關節突關節螺釘右側進針點在x、y、z軸上的偏移值分彆為(0.19 ±0.66) mm、(0.53±1.45) mm、(0.38±0.13) mm.寰樞椎經關節突關節螺釘最佳安全釘道和實際釘道的進針點、釘道方嚮的偏差差異無統計學意義(P>0.05). 結論 寰樞椎經關節突關節螺釘RPDT輔助置釘偏差原因主要為硬件和軟件存在的固有因素和操作過程中人為產生的因素.RPDT技術具有操作簡易和箇體化設計等優點,能極大地提高置釘精準性及減少螺釘偏差,有較廣汎的適用人群.
목적 험증재쾌속성형도향모판(rapid prototyping drill template,RPDT)보조하경후로환추추경관절돌관절라정치정적안전성、준학성급편차인소분석. 방법 선취정상경추표본12구,채용64배라선CT(층후1 mm)소묘후획득Dicom격식수거.획취수거경Mimics연건삼유중건후진행환추추경관절돌관절라정최가안전정도적계산궤보조설계,병건립여추추후표면해부결구삼유호보적기판,조합형성도향모판.재격광쾌속성형궤상진행도판실체화,이용RPDT보조치정.소묘치정후적표본,분할중건출라정정도로경.재계산궤연건중장치정전후적표본배대의합,중신정의삼유공간좌표축후,측량이상정도화실제라정적진침점、각도화정도방향. 결과 치입환추추경관절돌관절라정24매,균미천파골피질.환추추경관절돌관절라정좌우측최가안전정도심도분별위(37.34±2.31) mm、(37.11 ±2.21) mm.환추추경관절돌관절라정좌우측최가안전정도내경각균위0°.환추추경관절돌관절라정좌우측실제정도내경각분별위(0.15±0.58)°、(0.11±0.46)°.환추추경관절돌관절라정좌우측최가안전정도미앙각분별위(49.35±1.62)°、(48.83 ± 1.83)°.환추추경관절돌관절라정좌우측실제정도평균미앙각분별위(49.29±1.68)°、(49.10±1.45)°.환추추경관절돌관절라정좌측진침점재x、y、z축상적편이치분별위(0.21 ±0.65) mm、(0.69 ±1.48) mm、(0.39±0.11) mm.환추추경관절돌관절라정우측진침점재x、y、z축상적편이치분별위(0.19 ±0.66) mm、(0.53±1.45) mm、(0.38±0.13) mm.환추추경관절돌관절라정최가안전정도화실제정도적진침점、정도방향적편차차이무통계학의의(P>0.05). 결론 환추추경관절돌관절라정RPDT보조치정편차원인주요위경건화연건존재적고유인소화조작과정중인위산생적인소.RPDT기술구유조작간역화개체화설계등우점,능겁대지제고치정정준성급감소라정편차,유교엄범적괄용인군.
Objective To validate the safety and accuracy of a rapid prototyping drill template (RPDT) for posterior atlantoaxial transarticular screw placement and analyze factors for screw deviation.Methods Twelve normal cadaveric cervical spines were examined using 64 slice CT with 1-mm thick scan and data in Dicom format were recorded.After data was processed using software Mimics 10.01 for three-dimensional (3-D) model reconstruction,computer-assisted design of optimum trajactory for atlantoaxial transarticular screw placement was worked out and made into a drill template,where the surface was created as the inverse of axial posterior surface.The drill template was materialized in a rapid prototyping machine and used to place the screws.After surgery,the position of posterior atlantoaxial transarticular screw was evaluated by X-ray and CT scan.Screw entry point,angle and orientation of the optimal and actual trajactory were determined after fitting the position of the pre-operative and post-operative specimen in computer software and the redefining the 3-D coordinate axis.Results Twenty-four screws were implanted with no cortex perforation.Depth of the optimum save screw trajectory for atlantoaxial transarticular fixation was (37.34 ± 2.31) mm on the left side and (37.11 ± 2.21) mm on the right side.Introversion angles of the optimum save screw trajectory was 0° in both sides,but the actual angle was (0.15 ±0.58)°on the left side and (0.11 ±0.46)°on the right side.Elevation angle of the optimum save screw trajectory was (49.35 ± 1.62) °on the left side and (48.83 ± 1.83) ° on the right side,but the actual angle was (49.29 ± 1.68) °and (49.10 ± 1.45) °respectively.Average displacement of screw entry point in the x,y and z axis was respective (0.21 ±0.65) mm,(0.69 ± 1.48) mm and (0.39 ±0.11) mm on the right side,while (0.19 ± 0.66) mm,(0.53 ± 1.45) mm and (0.38 ± 0.13) mm on the left side.There were no statistically significant differences in deviation levels of entry point and orientation between the optimum and actual screw trajectory (P > 0.05).Conclusions Causes for deviation in RPDT-assisted placement of atlantoaxial transarticular screw are mainly intrinsic factors of the hardware and software and human factors in the operation.RPDT is easy in operation and has individualized design,which greatly improves the accuracy of screw placement and reduces screw deviation.RPDT can be widely used in clinical practice.