中华肝脏病杂志
中華肝髒病雜誌
중화간장병잡지
CHINESE JOURNAL OF HEPATOLOGY
2014年
8期
625-630
,共6页
刘建伟%张清清%李郑红%张启迪%曲颖%陆伦根%徐铭益
劉建偉%張清清%李鄭紅%張啟迪%麯穎%陸倫根%徐銘益
류건위%장청청%리정홍%장계적%곡영%륙륜근%서명익
癌,肝细胞%肝炎,乙型,慢性%肝硬化%基因%微阵列
癌,肝細胞%肝炎,乙型,慢性%肝硬化%基因%微陣列
암,간세포%간염,을형,만성%간경화%기인%미진렬
Carcinoma,hepatocellular%Hepatitis B,chronic%Liver cirrhosis%Genes%Microarray
目的 采用基因芯片的显著微阵列分析法(SAM)和预测微阵列分析法(PAM)了解慢性乙型肝炎肝硬化发生肝癌的基因表达谱的改变情况,以筛选肝硬化癌变的风险基因. 方法 采用人Affymetrix基因芯片技术,检测15例乙型肝炎肝硬化癌变患者的癌组织和癌旁硬化组织的基因表达谱.采用SAM和PAM软件筛选肝脏硬化组织和癌组织中表达差异明显的显著性基因和风险基因.实时定量PCR验证11个风险基因的mRNA在肝组织中的表达情况.两组数据间比较采用t检验,三组以上数据间比较采用单因素方差分析. 结果 芯片软件筛选出两组间差异2倍以上且P< 0.01的差异基因共497个.SAM分析得出162个显著性基因,其中18个显著性基因呈上调表达,144个显著性基因呈下调表达,平均显著性差异值的差异倍数是-1.46~ 1.28.PAM分析能有效分类两组的最少风险基因数为22个(阈值=5.5),交叉验证样本被分类的准确性达80%以上.22个基因的信号值在肝癌组和肝硬化组比较,在肝癌组4个风险基因表达上调,18个风险基因表达下调,组间差异倍数在2.038 ~ 7.897(P值均<0.01).实时定量PCR验证11个风险基因,肝癌组的mRNA (1.21±0.45)和mRNA的相对表达水平(1.11±0.16)较肝硬化组(1.26±0.44)显著下调(P=0.002),而mRNA的相对表达水平显著上调(1.66±0.09与1.37±0.04,P=0.004). 结论 乙型肝炎肝硬化发生肝癌会产生数百个基因表达的变化,PAM筛选出的3个风险预测基因叉头样转录因子P1、丝氨酸肽酶抑制因子Kazal型1和钾离子通道相关基因J16有望用于诊断和预测该病.
目的 採用基因芯片的顯著微陣列分析法(SAM)和預測微陣列分析法(PAM)瞭解慢性乙型肝炎肝硬化髮生肝癌的基因錶達譜的改變情況,以篩選肝硬化癌變的風險基因. 方法 採用人Affymetrix基因芯片技術,檢測15例乙型肝炎肝硬化癌變患者的癌組織和癌徬硬化組織的基因錶達譜.採用SAM和PAM軟件篩選肝髒硬化組織和癌組織中錶達差異明顯的顯著性基因和風險基因.實時定量PCR驗證11箇風險基因的mRNA在肝組織中的錶達情況.兩組數據間比較採用t檢驗,三組以上數據間比較採用單因素方差分析. 結果 芯片軟件篩選齣兩組間差異2倍以上且P< 0.01的差異基因共497箇.SAM分析得齣162箇顯著性基因,其中18箇顯著性基因呈上調錶達,144箇顯著性基因呈下調錶達,平均顯著性差異值的差異倍數是-1.46~ 1.28.PAM分析能有效分類兩組的最少風險基因數為22箇(閾值=5.5),交扠驗證樣本被分類的準確性達80%以上.22箇基因的信號值在肝癌組和肝硬化組比較,在肝癌組4箇風險基因錶達上調,18箇風險基因錶達下調,組間差異倍數在2.038 ~ 7.897(P值均<0.01).實時定量PCR驗證11箇風險基因,肝癌組的mRNA (1.21±0.45)和mRNA的相對錶達水平(1.11±0.16)較肝硬化組(1.26±0.44)顯著下調(P=0.002),而mRNA的相對錶達水平顯著上調(1.66±0.09與1.37±0.04,P=0.004). 結論 乙型肝炎肝硬化髮生肝癌會產生數百箇基因錶達的變化,PAM篩選齣的3箇風險預測基因扠頭樣轉錄因子P1、絲氨痠肽酶抑製因子Kazal型1和鉀離子通道相關基因J16有望用于診斷和預測該病.
목적 채용기인심편적현저미진렬분석법(SAM)화예측미진렬분석법(PAM)료해만성을형간염간경화발생간암적기인표체보적개변정황,이사선간경화암변적풍험기인. 방법 채용인Affymetrix기인심편기술,검측15례을형간염간경화암변환자적암조직화암방경화조직적기인표체보.채용SAM화PAM연건사선간장경화조직화암조직중표체차이명현적현저성기인화풍험기인.실시정량PCR험증11개풍험기인적mRNA재간조직중적표체정황.량조수거간비교채용t검험,삼조이상수거간비교채용단인소방차분석. 결과 심편연건사선출량조간차이2배이상차P< 0.01적차이기인공497개.SAM분석득출162개현저성기인,기중18개현저성기인정상조표체,144개현저성기인정하조표체,평균현저성차이치적차이배수시-1.46~ 1.28.PAM분석능유효분류량조적최소풍험기인수위22개(역치=5.5),교차험증양본피분류적준학성체80%이상.22개기인적신호치재간암조화간경화조비교,재간암조4개풍험기인표체상조,18개풍험기인표체하조,조간차이배수재2.038 ~ 7.897(P치균<0.01).실시정량PCR험증11개풍험기인,간암조적mRNA (1.21±0.45)화mRNA적상대표체수평(1.11±0.16)교간경화조(1.26±0.44)현저하조(P=0.002),이mRNA적상대표체수평현저상조(1.66±0.09여1.37±0.04,P=0.004). 결론 을형간염간경화발생간암회산생수백개기인표체적변화,PAM사선출적3개풍험예측기인차두양전록인자P1、사안산태매억제인자Kazal형1화갑리자통도상관기인J16유망용우진단화예측해병.
Objective To investigate whether gene expression profiles can be used to determine risk genes and predict HBV-related cirrhosis progression to liver carcinoma using Significance Analysis of Microarray (SAM) and Prediction Analysis ofMicroarray (PAM) methods.Methods The Affymetrix GeneChip was used to establish the gene expression profiles of liver tissues from 15 patients with chronic hepatitis B and cirrhosis or hepatocellular carcinoma (HCC).Differentially expressed genes (fold-change > 2; P value < 0.01) were selected by GeneSpring GX software.Risk genes related to cirrhosis and liver carcinoma were generated by SAM and PAM methods.Real-time PCR was used to verify the expression of risk genes in the liver tissues.Results Samples were clustered into the cirrhosis subgroup (n =15) or the HCC subgroup (n =15).A total of 497 differentially expressed genes were identified,SAM identified 162 significant genes,including 18 up-regulated genes and 144 down-regulated genes (fold-change:-1.46 to 1.28).PAM identified 22 genes with a "poor risk signature" (defined with a threshold of 5.5),which were associated with classifying cirrhosis and liver carcinoma; of these risk genes,4 were down-regulated and 18 were up-regulated in the HCC group compared to the cirrhosis group (fold-change:2.038 to 7.897,P value < 0.01).The correction of classification was more than 80%.FOXP1,SPINK1 and KCNJ16 were verified by real-time PCR as differently expressed in the two subgroups (Pvalue =0.011,0.002 and 0.004,respectively).Conclusion The altered gene profiles of carcinogenesis in HBV-related cirrhosis involves hundreds of genes.The combination of three "poor risk genes" may represent potential targets for diagnosis and prediction of liver carcinoma progression.